1,036 research outputs found

    Going batty: the challenges and opportunities of using drones to monitor the behaviour and habitat use of rays

    Get PDF
    The way an animal behaves in its habitat provides insight into its ecological role. As such, collecting robust, accurate datasets in a time-efficient manner is an ever-present pressure for the field of behavioural ecology. Faced with the shortcomings and physical limitations of traditional ground-based data collection techniques, particularly in marine studies, drones offer a low-cost and efficient approach for collecting data in a range of coastal environments. Despite drones being widely used to monitor a range of marine animals, they currently remain underutilised in ray research. The innovative application of drones in environmental and ecological studies has presented novel opportunities in animal observation and habitat assessment, although this emerging field faces substantial challenges. As we consider the possibility to monitor rays using drones, we face challenges related to local aviation regulations, the weather and environment, as well as sensor and platform limitations. Promising solutions continue to be developed, however, growing the potential for drone-based monitoring of behaviour and habitat use of rays. While the barriers to enter this field may appear daunting for researchers with little experience with drones, the technology is becoming increasingly accessible, helping ray researchers obtain a wide range of highly useful data

    Integrating a UAV-derived DEM in object-based image analysis increases habitat classification accuracy on coral reefs

    Get PDF
    Very shallow coral reefs (<5 m deep) are naturally exposed to strong sea surface temperature variations, UV radiation and other stressors exacerbated by climate change, raising great concern over their future. As such, accurate and ecologically informative coral reef maps are fundamental for their management and conservation. Since traditional mapping and monitoring methods fall short in very shallow habitats, shallow reefs are increasingly mapped with Unmanned Aerial Vehicles (UAVs). UAV imagery is commonly processed with Structure-from-Motion (SfM) to create orthomosaics and Digital Elevation Models (DEMs) spanning several hundred metres. Techniques to convert these SfM products into ecologically relevant habitat maps are still relatively underdeveloped. Here, we demonstrate that incorporating geomorphometric variables (derived from the DEM) in addition to spectral information (derived from the orthomosaic) can greatly enhance the accuracy of automatic habitat classification. Therefore, we mapped three very shallow reef areas off KAUST on the Saudi Arabian Red Sea coast with an RTK-ready UAV. Imagery was processed with SfM and classified through object-based image analysis (OBIA). Within our OBIA workflow, we observed overall accuracy increases of up to 11% when training a Random Forest classifier on both spectral and geomorphometric variables as opposed to traditional methods that only use spectral information. Our work highlights the potential of incorporating a UAV’s DEM in OBIA for benthic habitat mapping, a promising but still scarcely exploited asset

    Fish species classification in unconstrained underwater environments based on deep learning

    Get PDF
    Underwater video and digital still cameras are rapidly being adopted by marine scientists and managers as a tool for non-destructively quantifying and measuring the relative abundance, cover and size of marine fauna and flora. Imagery recorded of fish can be time consuming and costly to process and analyze manually. For this reason, there is great interest in automatic classification, counting, and measurement of fish. Unconstrained underwater scenes are highly variable due to changes in light intensity, changes in fish orientation due to movement, a variety of background habitats which sometimes also move, and most importantly similarity in shape and patterns among fish of different species. This poses a great challenge for image/video processing techniques to accurately differentiate between classes or species of fish to perform automatic classification. We present a machine learning approach, which is suitable for solving this challenge. We demonstrate the use of a convolution neural network model in a hierarchical feature combination setup to learn species-dependent visual features of fish that are unique, yet abstract and robust against environmental and intra-and inter-species variability. This approach avoids the need for explicitly extracting features from raw images of the fish using several fragmented image processing techniques. As a result, we achieve a single and generic trained architecture with favorable performance even for sample images of fish species that have not been used in training. Using the LifeCLEF14 and LifeCLEF15 benchmark fish datasets, we have demonstrated results with a correct classification rate of more than 90%

    A review of marine geomorphometry, the quantitative study of the seafloor

    Get PDF
    Geomorphometry, the science of quantitative terrain characterization, has traditionally focused on the investigation of terrestrial landscapes. However, the dramatic increase in the availability of digital bathymetric data and the increasing ease by which geomorphometry can be investigated using geographic information systems (GISs) and spatial analysis software has prompted interest in employing geomorphometric techniques to investigate the marine environment. Over the last decade or so, a multitude of geomorphometric techniques (e.g. terrain attributes, feature extraction, automated classification) have been applied to characterize seabed terrain from the coastal zone to the deep sea. Geomorphometric techniques are, however, not as varied, nor as extensively applied, in marine as they are in terrestrial environments. This is at least partly due to difficulties associated with capturing, classifying, and validating terrain characteristics underwater. There is, nevertheless, much common ground between terrestrial and marine geomorphometry applications and it is important that, in developing marine geomorphometry, we learn from experiences in terrestrial studies. However, not all terrestrial solutions can be adopted by marine geomorphometric studies since the dynamic, four-dimensional (4-D) nature of the marine environment causes its own issues throughout the geomorphometry workflow. For instance, issues with underwater positioning, variations in sound velocity in the water column affecting acousticbased mapping, and our inability to directly observe and measure depth and morphological features on the seafloor are all issues specific to the application of geomorphometry in the marine environment. Such issues fuel the need for a dedicated scientific effort in marine geomorphometry. This review aims to highlight the relatively recent growth of marine geomorphometry as a distinct discipline, and offers the first comprehensive overview of marine geomorphometry to date. We address all the five main steps of geomorphometry, from data collection to the application of terrain attributes and features. We focus on how these steps are relevant to marine geomorphometry and also highlight differences and similarities from terrestrial geomorphometry. We conclude with recommendations and reflections on the future of marine geomorphometry. To ensure that geomorphometry is used and developed to its full potential, there is a need to increase awareness of (1) marine geomorphometry amongst scientists already engaged in terrestrial geomorphometry, and of (2) geomorphometry as a science amongst marine scientists with a wide range of backgrounds and experiences.peer-reviewe
    • …
    corecore