8,808 research outputs found

    Modelling mobile health systems: an application of augmented MDA for the extended healthcare enterprise

    Get PDF
    Mobile health systems can extend the enterprise computing system of the healthcare provider by bringing services to the patient any time and anywhere. We propose a model-driven design and development methodology for the development of the m-health components in such extended enterprise computing systems. The methodology applies a model-driven design and development approach augmented with formal validation and verification to address quality and correctness and to support model transformation. Recent work on modelling applications from the healthcare domain is reported. One objective of this work is to explore and elaborate the proposed methodology. At the University of Twente we are developing m-health systems based on Body Area Networks (BANs). One specialization of the generic BAN is the health BAN, which incorporates a set of devices and associated software components to provide some set of health-related services. A patient will have a personalized instance of the health BAN customized to their current set of needs. A health professional interacts with their\ud patientsÂż BANs via a BAN Professional System. The set of deployed BANs are supported by a server. We refer to this distributed system as the BAN System. The BAN system extends the enterprise computing system of the healthcare provider. Development of such systems requires a sound software engineering approach and this is what we explore with the new methodology. The methodology is illustrated with reference to recent modelling activities targeted at real implementations. In the context of the Awareness project BAN implementations will be trialled in a number of clinical settings including epilepsy management and management of chronic pain

    Simulation and Bisimulation over Multiple Time Scales in a Behavioral Setting

    Full text link
    This paper introduces a new behavioral system model with distinct external and internal signals possibly evolving on different time scales. This allows to capture abstraction processes or signal aggregation in the context of control and verification of large scale systems. For this new system model different notions of simulation and bisimulation are derived, ensuring that they are, respectively, preorders and equivalence relations for the system class under consideration. These relations can capture a wide selection of similarity notions available in the literature. This paper therefore provides a suitable framework for their comparisonComment: Submitted to 22nd Mediterranean Conference on Control and Automatio
    • …
    corecore