1,619 research outputs found

    Predicting continuous conflict perception with Bayesian Gaussian processes

    Get PDF
    Conflict is one of the most important phenomena of social life, but it is still largely neglected by the computing community. This work proposes an approach that detects common conversational social signals (loudness, overlapping speech, etc.) and predicts the conflict level perceived by human observers in continuous, non-categorical terms. The proposed regression approach is fully Bayesian and it adopts Automatic Relevance Determination to identify the social signals that influence most the outcome of the prediction. The experiments are performed over the SSPNet Conflict Corpus, a publicly available collection of 1430 clips extracted from televised political debates (roughly 12 hours of material for 138 subjects in total). The results show that it is possible to achieve a correlation close to 0.8 between actual and predicted conflict perception

    Dialogue Act Modeling for Automatic Tagging and Recognition of Conversational Speech

    Get PDF
    We describe a statistical approach for modeling dialogue acts in conversational speech, i.e., speech-act-like units such as Statement, Question, Backchannel, Agreement, Disagreement, and Apology. Our model detects and predicts dialogue acts based on lexical, collocational, and prosodic cues, as well as on the discourse coherence of the dialogue act sequence. The dialogue model is based on treating the discourse structure of a conversation as a hidden Markov model and the individual dialogue acts as observations emanating from the model states. Constraints on the likely sequence of dialogue acts are modeled via a dialogue act n-gram. The statistical dialogue grammar is combined with word n-grams, decision trees, and neural networks modeling the idiosyncratic lexical and prosodic manifestations of each dialogue act. We develop a probabilistic integration of speech recognition with dialogue modeling, to improve both speech recognition and dialogue act classification accuracy. Models are trained and evaluated using a large hand-labeled database of 1,155 conversations from the Switchboard corpus of spontaneous human-to-human telephone speech. We achieved good dialogue act labeling accuracy (65% based on errorful, automatically recognized words and prosody, and 71% based on word transcripts, compared to a chance baseline accuracy of 35% and human accuracy of 84%) and a small reduction in word recognition error.Comment: 35 pages, 5 figures. Changes in copy editing (note title spelling changed

    Detecting Low Rapport During Natural Interactions in Small Groups from Non-Verbal Behaviour

    Full text link
    Rapport, the close and harmonious relationship in which interaction partners are "in sync" with each other, was shown to result in smoother social interactions, improved collaboration, and improved interpersonal outcomes. In this work, we are first to investigate automatic prediction of low rapport during natural interactions within small groups. This task is challenging given that rapport only manifests in subtle non-verbal signals that are, in addition, subject to influences of group dynamics as well as inter-personal idiosyncrasies. We record videos of unscripted discussions of three to four people using a multi-view camera system and microphones. We analyse a rich set of non-verbal signals for rapport detection, namely facial expressions, hand motion, gaze, speaker turns, and speech prosody. Using facial features, we can detect low rapport with an average precision of 0.7 (chance level at 0.25), while incorporating prior knowledge of participants' personalities can even achieve early prediction without a drop in performance. We further provide a detailed analysis of different feature sets and the amount of information contained in different temporal segments of the interactions.Comment: 12 pages, 6 figure

    Recognizing Uncertainty in Speech

    Get PDF
    We address the problem of inferring a speaker's level of certainty based on prosodic information in the speech signal, which has application in speech-based dialogue systems. We show that using phrase-level prosodic features centered around the phrases causing uncertainty, in addition to utterance-level prosodic features, improves our model's level of certainty classification. In addition, our models can be used to predict which phrase a person is uncertain about. These results rely on a novel method for eliciting utterances of varying levels of certainty that allows us to compare the utility of contextually-based feature sets. We elicit level of certainty ratings from both the speakers themselves and a panel of listeners, finding that there is often a mismatch between speakers' internal states and their perceived states, and highlighting the importance of this distinction.Comment: 11 page

    Modelling Participant Affect in Meetings with Turn-Taking Features

    Get PDF
    This paper explores the relationship between turn-taking and meeting affect. To investigate this, we model post-meeting ratings of satisfaction, cohesion and leadership from participants of AMI corpus meetings using group and individual turn-taking features. The results indicate that participants gave higher satisfaction and cohesiveness ratings to meetings with greater group turn-taking freedom and individual very short utterance rates, while lower ratings were associated with more silence and speaker overlap. Besides broad applicability to satisfaction ratings, turn-taking freedom was found to be a better predictor than equality of speaking time when considering whether participants felt that everyone they had a chance to contribute. If we include dialogue act information, we see that substantive feedback type turns like assessments are more predictive of meeting affect than information giving acts or backchannels. This work highlights the importance of feedback turns and modelling group level activity in multiparty dialogue for understanding the social aspects of speech

    Robust Modeling of Epistemic Mental States

    Full text link
    This work identifies and advances some research challenges in the analysis of facial features and their temporal dynamics with epistemic mental states in dyadic conversations. Epistemic states are: Agreement, Concentration, Thoughtful, Certain, and Interest. In this paper, we perform a number of statistical analyses and simulations to identify the relationship between facial features and epistemic states. Non-linear relations are found to be more prevalent, while temporal features derived from original facial features have demonstrated a strong correlation with intensity changes. Then, we propose a novel prediction framework that takes facial features and their nonlinear relation scores as input and predict different epistemic states in videos. The prediction of epistemic states is boosted when the classification of emotion changing regions such as rising, falling, or steady-state are incorporated with the temporal features. The proposed predictive models can predict the epistemic states with significantly improved accuracy: correlation coefficient (CoERR) for Agreement is 0.827, for Concentration 0.901, for Thoughtful 0.794, for Certain 0.854, and for Interest 0.913.Comment: Accepted for Publication in Multimedia Tools and Application, Special Issue: Socio-Affective Technologie
    corecore