3,362 research outputs found

    Machine Understanding of Human Behavior

    Get PDF
    A widely accepted prediction is that computing will move to the background, weaving itself into the fabric of our everyday living spaces and projecting the human user into the foreground. If this prediction is to come true, then next generation computing, which we will call human computing, should be about anticipatory user interfaces that should be human-centered, built for humans based on human models. They should transcend the traditional keyboard and mouse to include natural, human-like interactive functions including understanding and emulating certain human behaviors such as affective and social signaling. This article discusses a number of components of human behavior, how they might be integrated into computers, and how far we are from realizing the front end of human computing, that is, how far are we from enabling computers to understand human behavior

    Visual tracking of small animals in cluttered natural environments using a freely moving camera

    Get PDF
    Image-based tracking of animals in their natural habitats can provide rich behavioural data, but is very challenging due to complex and dynamic background and target appearances. We present an effective method to recover the positions of terrestrial animals in cluttered environments from video sequences filmed using a freely moving monocular camera. The method uses residual motion cues to detect the targets and is thus robust to different lighting conditions and requires no a-priori appearance model of the animal or environment. The detection is globally optimised based on an inference problem formulation using factor graphs. This handles ambiguities such as occlusions and intersections and provides automatic initialisation. Furthermore, this formulation allows a seamless integration of occasional user input for the most difficult situations, so that the effect of a few manual position estimates are smoothly distributed over long sequences. Testing our system against a benchmark dataset featuring small targets in natural scenes, we obtain 96% accuracy for fully automated tracking. We also demonstrate reliable tracking in a new data set that includes different targets (insects, vertebrates or artificial objects) in a variety of environments (desert, jungle, meadows, urban) using different imaging devices (day / night vision cameras, smart phones) and modalities (stationary, hand-held, drone operated)
    • …
    corecore