20,276 research outputs found

    Isometry groups of non-positively curved spaces: discrete subgroups

    Full text link
    We study lattices in non-positively curved metric spaces. Borel density is established in that setting as well as a form of Mostow rigidity. A converse to the flat torus theorem is provided. Geometric arithmeticity results are obtained after a detour through superrigidity and arithmeticity of abstract lattices. Residual finiteness of lattices is also studied. Riemannian symmetric spaces are characterised amongst CAT(0) spaces admitting lattices in terms of the existence of parabolic isometries.Comment: This is the second of a pair of two articles, originally posted on September 2, 2008 as arXiv:0809.0457v1 For the first part, see arXiv:0809.0457v

    Local causal structures, Hadamard states and the principle of local covariance in quantum field theory

    Full text link
    In the framework of the algebraic formulation, we discuss and analyse some new features of the local structure of a real scalar quantum field theory in a strongly causal spacetime. In particular we use the properties of the exponential map to set up a local version of a bulk-to-boundary correspondence. The bulk is a suitable subset of a geodesic neighbourhood of any but fixed point p of the underlying background, while the boundary is a part of the future light cone having p as its own tip. In this regime, we provide a novel notion for the extended *-algebra of Wick polynomials on the said cone and, on the one hand, we prove that it contains the information of the bulk counterpart via an injective *-homomorphism while, on the other hand, we associate to it a distinguished state whose pull-back in the bulk is of Hadamard form. The main advantage of this point of view arises if one uses the universal properties of the exponential map and of the light cone in order to show that, for any two given backgrounds M and M' and for any two subsets of geodesic neighbourhoods of two arbitrary points, it is possible to engineer the above procedure such that the boundary extended algebras are related via a restriction homomorphism. This allows for the pull-back of boundary states in both spacetimes and, thus, to set up a machinery which permits the comparison of expectation values of local field observables in M and M'.Comment: 42 pages, xy package is used, typos corrected, clarifications adde

    On the photon Green functions in curved space-time

    Full text link
    Quantization of electrodynamics in curved space-time in the Lorenz gauge and with arbitrary gauge parameter makes it necessary to study Green functions of non-minimal operators with variable coefficients. Starting from the integral representation of photon Green functions, we link them to the evaluation of integrals involving Gamma functions. Eventually, the full asymptotic expansion of the Feynman photon Green function at small values of the world function, as well as its explicit dependence on the gauge parameter, are obtained without adding by hand a mass term to the Faddeev--Popov Lagrangian. Coincidence limits of second covariant derivatives of the associated Hadamard function are also evaluated, as a first step towards the energy-momentum tensor in the non-minimal case.Comment: 22 pages, plain Tex. All sections and appendices have been improve

    Coherent states for FLRW space-times in loop quantum gravity

    Full text link
    We construct a class of coherent spin-network states that capture proprieties of curved space-times of the Friedmann-Lama\^itre-Robertson-Walker type on which they are peaked. The data coded by a coherent state are associated to a cellular decomposition of a spatial (t=t=const.) section with dual graph given by the complete five-vertex graph, though the construction can be easily generalized to other graphs. The labels of coherent states are complex SL(2, \mathbbm{C}) variables, one for each link of the graph and are computed through a smearing process starting from a continuum extrinsic and intrinsic geometry of the canonical surface. The construction covers both Euclidean and Lorentzian signatures; in the Euclidean case and in the limit of flat space we reproduce the simplicial 4-simplex semiclassical states used in Spin Foams.Comment: 10 pages, 1 figure, published versio
    • …
    corecore