58,612 research outputs found

    Anticipatory Mobile Computing: A Survey of the State of the Art and Research Challenges

    Get PDF
    Today's mobile phones are far from mere communication devices they were ten years ago. Equipped with sophisticated sensors and advanced computing hardware, phones can be used to infer users' location, activity, social setting and more. As devices become increasingly intelligent, their capabilities evolve beyond inferring context to predicting it, and then reasoning and acting upon the predicted context. This article provides an overview of the current state of the art in mobile sensing and context prediction paving the way for full-fledged anticipatory mobile computing. We present a survey of phenomena that mobile phones can infer and predict, and offer a description of machine learning techniques used for such predictions. We then discuss proactive decision making and decision delivery via the user-device feedback loop. Finally, we discuss the challenges and opportunities of anticipatory mobile computing.Comment: 29 pages, 5 figure

    Emotions in context: examining pervasive affective sensing systems, applications, and analyses

    Get PDF
    Pervasive sensing has opened up new opportunities for measuring our feelings and understanding our behavior by monitoring our affective states while mobile. This review paper surveys pervasive affect sensing by examining and considering three major elements of affective pervasive systems, namely; “sensing”, “analysis”, and “application”. Sensing investigates the different sensing modalities that are used in existing real-time affective applications, Analysis explores different approaches to emotion recognition and visualization based on different types of collected data, and Application investigates different leading areas of affective applications. For each of the three aspects, the paper includes an extensive survey of the literature and finally outlines some of challenges and future research opportunities of affective sensing in the context of pervasive computing

    Big Data and the Internet of Things

    Full text link
    Advances in sensing and computing capabilities are making it possible to embed increasing computing power in small devices. This has enabled the sensing devices not just to passively capture data at very high resolution but also to take sophisticated actions in response. Combined with advances in communication, this is resulting in an ecosystem of highly interconnected devices referred to as the Internet of Things - IoT. In conjunction, the advances in machine learning have allowed building models on this ever increasing amounts of data. Consequently, devices all the way from heavy assets such as aircraft engines to wearables such as health monitors can all now not only generate massive amounts of data but can draw back on aggregate analytics to "improve" their performance over time. Big data analytics has been identified as a key enabler for the IoT. In this chapter, we discuss various avenues of the IoT where big data analytics either is already making a significant impact or is on the cusp of doing so. We also discuss social implications and areas of concern.Comment: 33 pages. draft of upcoming book chapter in Japkowicz and Stefanowski (eds.) Big Data Analysis: New algorithms for a new society, Springer Series on Studies in Big Data, to appea

    Big data analytics:Computational intelligence techniques and application areas

    Get PDF
    Big Data has significant impact in developing functional smart cities and supporting modern societies. In this paper, we investigate the importance of Big Data in modern life and economy, and discuss challenges arising from Big Data utilization. Different computational intelligence techniques have been considered as tools for Big Data analytics. We also explore the powerful combination of Big Data and Computational Intelligence (CI) and identify a number of areas, where novel applications in real world smart city problems can be developed by utilizing these powerful tools and techniques. We present a case study for intelligent transportation in the context of a smart city, and a novel data modelling methodology based on a biologically inspired universal generative modelling approach called Hierarchical Spatial-Temporal State Machine (HSTSM). We further discuss various implications of policy, protection, valuation and commercialization related to Big Data, its applications and deployment

    Web Science: expanding the notion of Computer Science

    No full text
    Academic disciplines which practice in the context of rapid external change face particular problems when seeking to maintain timely, current and relevant teaching programs. In different institutions faculty will tune and update individual component courses while more radical revisions are typically departmental-wide strategic responses to perceived needs. Internationally, the ACM has sought to define curriculum recommendations since the 1960s and recognizes the diversity of the computing disciplines with its 2005 overview volume. The consequent rolling program of revisions is demanding in terms of time and effort, but an inevitable response to the change inherent is our family of specialisms. Preparation for the Computer Curricula 2013 is underway, so it seems appropriate to ask what place Web Science will have in the curriculum landscape. Web Science has been variously described; the most concise definition being the ‘science of decentralized information systems’. Web science is fundamentally interdisciplinary encompassing the study of the technologies and engineering which constitute the Web, alongside emerging associated human, social and organizational practices. Furthermore, to date little teaching of Web Science is at undergraduate level. Some questions emerge - is Web Science a transient artifact? Can Web Science claim a place in the ACM family, Is Web Science an exotic relative with a home elsewhere? This paper discusses the role and place of Web Science in the context of the computing disciplines. It provides an account of work which has been established towards defining an initial curriculum for Web Science with plans for future developments utilizing novel methods to support and elaborate curriculum definition and review. The findings of a desk survey of existing related curriculum recommendations are presented. The paper concludes with recommendations for future activities which may help us determine whether we should expand the notion of computer science
    corecore