57,248 research outputs found

    Intelligent Energy Optimization for User Intelligible Goals in Smart Home Environments

    Get PDF
    Intelligent management of energy consumption is one of the key issues for future energy distribution systems, smart buildings, and consumer appliances. The problem can be tackled both from the point of view of the utility provider, with the intelligence embedded in the smart grid, or from the point of view of the consumer, thanks to suitable local energy management systems (EMS). Conserving energy, however, should respect the user requirements regarding the desired state of the environment, therefore an EMS should constantly and intelligently find the balance between user requirements and energy saving. The paper proposes a solution to this problem, based on explicit high-level modeling of user intentions and automatic control of device states through the solution and optimization of a constrained Boolean satisfiability problem. The proposed approach has been integrated into a smart environment framework, and promising preliminary results are reporte

    A Review on Energy Consumption Optimization Techniques in IoT Based Smart Building Environments

    Get PDF
    In recent years, due to the unnecessary wastage of electrical energy in residential buildings, the requirement of energy optimization and user comfort has gained vital importance. In the literature, various techniques have been proposed addressing the energy optimization problem. The goal of each technique was to maintain a balance between user comfort and energy requirements such that the user can achieve the desired comfort level with the minimum amount of energy consumption. Researchers have addressed the issue with the help of different optimization algorithms and variations in the parameters to reduce energy consumption. To the best of our knowledge, this problem is not solved yet due to its challenging nature. The gap in the literature is due to the advancements in the technology and drawbacks of the optimization algorithms and the introduction of different new optimization algorithms. Further, many newly proposed optimization algorithms which have produced better accuracy on the benchmark instances but have not been applied yet for the optimization of energy consumption in smart homes. In this paper, we have carried out a detailed literature review of the techniques used for the optimization of energy consumption and scheduling in smart homes. The detailed discussion has been carried out on different factors contributing towards thermal comfort, visual comfort, and air quality comfort. We have also reviewed the fog and edge computing techniques used in smart homes

    n/a

    Get PDF
    The effect of the sun and its path on thermal comfort and energy consumption in residential buildings in tropical climates constitutes serious concern for designers, building owners and users. Passive design approaches based on the sun and its path have been identified as a means of reducing energy consumption, as well as enhancing thermal comfort in buildings worldwide. Hence, a thorough understanding regarding the sun path is key to achieving this. This is necessary due to energy need, poor energy supply and distribution, energy poverty and over-dependence on electric generators for power supply in Nigeria. These challenges call for a change in the approach to energy related issues, especially in terms of buildings. The aim of this study is to explore the influence of building orientation, glazing and the use of shading devices on residential buildings in Nigeria. This is intended to provide data that will guide designers in the design of energy efficient residential buildings. The paper used EnergyPlus software to analyze a typical semi-detached residential building in Lokoja, Nigeria, using hourly weather data for a period of 10 years. Building performance was studied as well as possible improvement regarding different orientations, glazing types and shading devices. The simulation results showed reductions in energy consumption in response to changes in building orientation, types of glazing and the use of shading devices. The results indicate a 29.45% reduction in solar gains and 1.90% in annual operative temperature using natural ventilation only. This shows a huge potential to reduce energy consumption and improve people’s wellbeing using proper building orientation, glazing and appropriate shading devices on building envelope. The study concludes that for a significant reduction in total energy consumption by residential buildings, design should focus on multiple design options rather than concentrating on one or few building elements. Moreover, the investigation confirms that energy performance modelling can be used by building designers to take advantage of the sun and to evaluate various design options

    An IoT-based solution for monitoring a fleet of educational buildings focusing on energy efficiency

    Get PDF
    Raising awareness among young people and changing their behaviour and habits concerning energy usage iskey to achieving sustained energy saving. Additionally, young people are very sensitive to environmental protection so raising awareness among children is much easier than with any other group of citizens. This work examinesways to create an innovative Information & Communication Technologies (ICT) ecosystem (including web-based, mobile, social and sensing elements) tailored specifically for school environments, taking into account both theusers (faculty, staff, students, parents) and school buildings, thus motivating and supporting young citizenś behavioural change to achieve greater energy efficiency. A mixture of open-source IoT hardware and proprietary platforms on the infrastructure level, are currently being utilized for monitoring a fleet of 18 educational buildings across 3 countries, comprising over 700 IoT monitoring points. Hereon presented is the system's high-level architecture, as well as several aspects of its implementation, related to the application domain of educational building monitoring and energy efficiency. The system is developed based on open-source technologies andservices in order to make it capable of providing open IT-infrastructure and support from different commercial hardware/sensor vendors as well as open-source solutions. The system presented can be used to develop and offer newapp-based solutions that can be used either for educational purposes or for managing the energy efficiency ofthebuilding. The system is replicable and adaptable to settings that may be different than the scenarios envisionedhere (e.g., targeting different climate zones), different IT infrastructures and can be easily extended to accommodate integration with other systems. The overall performance of the system is evaluated in real-world environment in terms of scalability, responsiveness and simplicity

    Rule-based system to detect energy efficiency anomalies in smart buildings, a data mining approach

    Get PDF
    The rapidly growing world energy use already has concerns over the exhaustion of energy resources andheavy environmental impacts. As a result of these concerns, a trend of green and smart cities has beenincreasing. To respond to this increasing trend of smart cities with buildings every time more complex,in this paper we have proposed a new method to solve energy inefficiencies detection problem in smartbuildings. This solution is based on a rule-based system developed through data mining techniques andapplying the knowledge of energy efficiency experts. A set of useful energy efficiency indicators is alsoproposed to detect anomalies. The data mining system is developed through the knowledge extracted bya full set of building sensors. So, the results of this process provide a set of rules that are used as a partof a decision support system for the optimisation of energy consumption and the detection of anomaliesin smart buildings.Comisión Europea FP7-28522

    Policy Design for Controlling Set-Point Temperature of ACs in Shared Spaces of Buildings

    Full text link
    Air conditioning systems are responsible for the major percentage of energy consumption in buildings. Shared spaces constitute considerable office space area, in which most office employees perform their meetings and daily tasks, and therefore the ACs in these areas have significant impact on the energy usage of the entire office building. The cost of this energy consumption, however, is not paid by the shared space users, and the AC's temperature set-point is not determined based on the users' preferences. This latter factor is compounded by the fact that different people may have different choices of temperature set-points and sensitivities to change of temperature. Therefore, it is a challenging task to design an office policy to decide on a particular set-point based on such a diverse preference set. As a result, users are not aware of the energy consumption in shared spaces, which may potentially increase the energy wastage and related cost of office buildings. In this context, this paper proposes an energy policy for an office shared space by exploiting an established temperature control mechanism. In particular, we choose meeting rooms in an office building as the test case and design a policy according to which each user of the room can give a preference on the temperature set-point and is paid for felt discomfort if the set-point is not fixed according to the given preference. On the other hand, users who enjoy the thermal comfort compensate the other users of the room. Thus, the policy enables the users to be cognizant and responsible for the payment on the energy consumption of the office space they are sharing, and at the same time ensures that the users are satisfied either via thermal comfort or through incentives. The policy is also shown to be beneficial for building management. Through experiment based case studies, we show the effectiveness of the proposed policy.Comment: Journal paper accepted in Energy & Buildings (Elsevier
    corecore