44,251 research outputs found

    Cheetah Experimental Platform Web 1.0: Cleaning Pupillary Data

    Get PDF
    Recently, researchers started using cognitive load in various settings, e.g., educational psychology, cognitive load theory, or human-computer interaction. Cognitive load characterizes a tasks' demand on the limited information processing capacity of the brain. The widespread adoption of eye-tracking devices led to increased attention for objectively measuring cognitive load via pupil dilation. However, this approach requires a standardized data processing routine to reliably measure cognitive load. This technical report presents CEP-Web, an open source platform to providing state of the art data processing routines for cleaning pupillary data combined with a graphical user interface, enabling the management of studies and subjects. Future developments will include the support for analyzing the cleaned data as well as support for Task-Evoked Pupillary Response (TEPR) studies

    Autonomous 3D Exploration of Large Structures Using an UAV Equipped with a 2D LIDAR

    Get PDF
    This paper addressed the challenge of exploring large, unknown, and unstructured industrial environments with an unmanned aerial vehicle (UAV). The resulting system combined well-known components and techniques with a new manoeuvre to use a low-cost 2D laser to measure a 3D structure. Our approach combined frontier-based exploration, the Lazy Theta* path planner, and a flyby sampling manoeuvre to create a 3D map of large scenarios. One of the novelties of our system is that all the algorithms relied on the multi-resolution of the octomap for the world representation. We used a Hardware-in-the-Loop (HitL) simulation environment to collect accurate measurements of the capability of the open-source system to run online and on-board the UAV in real-time. Our approach is compared to different reference heuristics under this simulation environment showing better performance in regards to the amount of explored space. With the proposed approach, the UAV is able to explore 93% of the search space under 30 min, generating a path without repetition that adjusts to the occupied space covering indoor locations, irregular structures, and suspended obstaclesUnión Europea Marie Sklodowska-Curie 64215Unión Europea MULTIDRONE (H2020-ICT-731667)Uniión Europea HYFLIERS (H2020-ICT-779411

    An end-to-end software solution for the analysis of high-throughput single-cell migration data

    Get PDF
    The systematic study of single-cell migration requires the availability of software for assisting data inspection, quality control and analysis. This is especially important for high-throughput experiments, where multiple biological conditions are tested in parallel. Although the field of cell migration can count on different computational tools for cell segmentation and tracking, downstream data visualization, parameter extraction and statistical analysis are still left to the user and are currently not possible within a single tool. This article presents a completely new module for the open-source, cross-platform CellMissy software for cell migration data management. This module is the first tool to focus specifically on single-cell migration data downstream of image processing. It allows fast comparison across all tested conditions, providing automated data visualization, assisted data filtering and quality control, extraction of various commonly used cell migration parameters, and non-parametric statistical analysis. Importantly, the module enables parameters computation both at the trajectory-and at the step-level. Moreover, this single-cell analysis module is complemented by a new data import module that accommodates multiwell plate data obtained from high-throughput experiments, and is easily extensible through a plugin architecture. In conclusion, the end-to-end software solution presented here tackles a key bioinformatics challenge in the cell migration field, assisting researchers in their highthroughput data processing

    Dynamic behaviours in tax evasion. An experimental approach

    Get PDF
    This paper investigates, from an experimental perspective, on the tax payers behaviour in a dynamic context and more precisely tries to cope with three main topics related to tax evasion. The first aspect analysed regards the effects produced by a repetitive dynamic choice process on the subjects’ attitude towards risk and on the ability to learn to cope with risk. The second theme treated is about the effects produced on the tax payers by the inclusion in the experimental design of psychological moral constraints. The final topic is on the effects produced by the specific experimental context chosen (the simulation of a fiscal environment compared with other simulated environments). The main results emerged from the 8 experiments carried out confirmed the importance of the psychological factors in determining the tax payers actual behaviours and shown the complex dynamic that the agents activate to cope with risk

    Practical implementation of nonlinear time series methods: The TISEAN package

    Full text link
    Nonlinear time series analysis is becoming a more and more reliable tool for the study of complicated dynamics from measurements. The concept of low-dimensional chaos has proven to be fruitful in the understanding of many complex phenomena despite the fact that very few natural systems have actually been found to be low dimensional deterministic in the sense of the theory. In order to evaluate the long term usefulness of the nonlinear time series approach as inspired by chaos theory, it will be important that the corresponding methods become more widely accessible. This paper, while not a proper review on nonlinear time series analysis, tries to make a contribution to this process by describing the actual implementation of the algorithms, and their proper usage. Most of the methods require the choice of certain parameters for each specific time series application. We will try to give guidance in this respect. The scope and selection of topics in this article, as well as the implementational choices that have been made, correspond to the contents of the software package TISEAN which is publicly available from http://www.mpipks-dresden.mpg.de/~tisean . In fact, this paper can be seen as an extended manual for the TISEAN programs. It fills the gap between the technical documentation and the existing literature, providing the necessary entry points for a more thorough study of the theoretical background.Comment: 27 pages, 21 figures, downloadable software at http://www.mpipks-dresden.mpg.de/~tisea

    Task-demands can immediately reverse the effects of sensory-driven saliency in complex visual stimuli

    Get PDF
    In natural vision both stimulus features and task-demands affect an observer's attention. However, the relationship between sensory-driven (“bottom-up”) and task-dependent (“top-down”) factors remains controversial: Can task-demands counteract strong sensory signals fully, quickly, and irrespective of bottom-up features? To measure attention under naturalistic conditions, we recorded eye-movements in human observers, while they viewed photographs of outdoor scenes. In the first experiment, smooth modulations of contrast biased the stimuli's sensory-driven saliency towards one side. In free-viewing, observers' eye-positions were immediately biased toward the high-contrast, i.e., high-saliency, side. However, this sensory-driven bias disappeared entirely when observers searched for a bull's-eye target embedded with equal probability to either side of the stimulus. When the target always occurred in the low-contrast side, observers' eye-positions were immediately biased towards this low-saliency side, i.e., the sensory-driven bias reversed. Hence, task-demands do not only override sensory-driven saliency but also actively countermand it. In a second experiment, a 5-Hz flicker replaced the contrast gradient. Whereas the bias was less persistent in free viewing, the overriding and reversal took longer to deploy. Hence, insufficient sensory-driven saliency cannot account for the bias reversal. In a third experiment, subjects searched for a spot of locally increased contrast (“oddity”) instead of the bull's-eye (“template”). In contrast to the other conditions, a slight sensory-driven free-viewing bias prevails in this condition. In a fourth experiment, we demonstrate that at known locations template targets are detected faster than oddity targets, suggesting that the former induce a stronger top-down drive when used as search targets. Taken together, task-demands can override sensory-driven saliency in complex visual stimuli almost immediately, and the extent of overriding depends on the search target and the overridden feature, but not on the latter's free-viewing saliency

    "Influence Sketching": Finding Influential Samples In Large-Scale Regressions

    Full text link
    There is an especially strong need in modern large-scale data analysis to prioritize samples for manual inspection. For example, the inspection could target important mislabeled samples or key vulnerabilities exploitable by an adversarial attack. In order to solve the "needle in the haystack" problem of which samples to inspect, we develop a new scalable version of Cook's distance, a classical statistical technique for identifying samples which unusually strongly impact the fit of a regression model (and its downstream predictions). In order to scale this technique up to very large and high-dimensional datasets, we introduce a new algorithm which we call "influence sketching." Influence sketching embeds random projections within the influence computation; in particular, the influence score is calculated using the randomly projected pseudo-dataset from the post-convergence Generalized Linear Model (GLM). We validate that influence sketching can reliably and successfully discover influential samples by applying the technique to a malware detection dataset of over 2 million executable files, each represented with almost 100,000 features. For example, we find that randomly deleting approximately 10% of training samples reduces predictive accuracy only slightly from 99.47% to 99.45%, whereas deleting the same number of samples with high influence sketch scores reduces predictive accuracy all the way down to 90.24%. Moreover, we find that influential samples are especially likely to be mislabeled. In the case study, we manually inspect the most influential samples, and find that influence sketching pointed us to new, previously unidentified pieces of malware.Comment: fixed additional typo

    Interactive Reading Using Low Cost Brain Computer Interfaces

    Get PDF
    This work shows the feasibility for document reader user applications using a consumer grade non-invasive BCI headset. Although Brain Computer Interface (BCI) type devices are beginning to aim at the consumer level, the level at which they can actually detect brain activity is limited. There is however progress achieved in allowing for interaction between a human and a computer when this interaction is limited to around 2 actions. We employed the Emotiv Epoc, a low-priced BCI headset, to design and build a proof-of-concept document reader system that allows users to navigate the document using this low cast BCI device. Our prototype has been implemented and evaluated with 12 participants who were trained to navigate documents using signals acquired by Emotive Epoc
    corecore