129 research outputs found

    Combining low-code programming and SDL-based modeling with snap! in the industry 4.0 context

    Get PDF
    © 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.One of the main challenges to implement Industry 4.0 technologies within the industrial fabric is the lack of suitable concrete models and tools that demonstrate the potential benefits of embracing the digital transformation process. To overcome this challenge, over the past years, various Industry 4.0 automation and robotics providers have presented solutions based on visual block programming languages, which follow an emerging low-code approach to reduce the entry barriers of digital technologies. However, block-based low-code tools typically lack the formality introduced by specification languages, limiting their ability to model the industrial processes formally. Taking this into account, in this article, we present the combination of specification languages and visual block programming languages to enable industrial users to test and/or build their own Digital Twin models at a suitable abstraction level and with low entry barriers. In particular, we combine SDL and Snap! to create SDL4Snap!, an opensource and web-based tool that facilitates the implementation and validation of Digital Twin prototypes. Overall, the resulting tool has the potential to reduce the entry barrier to Digital Twins in small and medium enterprises, which are part of the late majority and laggard groups regarding the adoption of digital technologies in the context of Industry 4.0.Peer ReviewedPostprint (published version

    A Framework for Executable Systems Modeling

    Get PDF
    Systems Modeling Language (SysML), like its parent language, the Unified Modeling Language (UML), consists of a number of independently derived model languages (i.e. state charts, activity models etc.) which have been co-opted into a single modeling framework. This, together with the lack of an overarching meta-model that supports uniform semantics across the various diagram types, has resulted in a large unwieldy and informal language schema. Additionally, SysML does not offer a built in framework for managing time and the scheduling of time based events in a simulation. In response to these challenges, a number of auxiliary standards have been offered by the Object Management Group (OMG); most pertinent here are the foundational UML subset (fUML), Action language for fUML (Alf), and the UML profile for Modeling and Analysis of Real Time and Embedded Systems (MARTE). However, there remains a lack of a similar treatment of SysML tailored towards precise and formal modeling in the systems engineering domain. This work addresses this gap by offering refined semantics for SysML akin to fUML and MARTE standards, aimed at primarily supporting the development of time based simulation models typically applied for model verification and validation in systems engineering. The result of this work offers an Executable Systems Modeling Language (ESysML) and a prototype modeling tool that serves as an implementation test bed for the ESysML language. Additionally a model development process is offered to guide user appropriation of the provided framework for model building

    A Model of Computation for Reconfigurable Systems

    Get PDF
    The dissertation introduces RecDEVS, a model of computation for reconfigurable hardware systems. Existing computational models for conventional hardware structures are not suited very well to model the dynamic behavior of reconfigurable systems. This work first systematically investigates the requirements that are necessary to properly model reconfigurable systems. Then, the Discrete Event System Specification (DEVS) formalism is extended into RecDEVS, a formalism capable of modeling reconfigurable systems. It is then demonstrated how RecDEVS can be utilized to do a a model based design flow that eases system verification

    Development of a Process Modelling System for Simulation

    Get PDF
    This thesis details the development of a process modelling technique to aid a simulation model developer during the requirements gathering and conceptual modelling phases of a simulation project. There are a number of process modelling techniques available that are capable of being used during such phases of a simulation project, however there is currently a lack of process modelling techniques developed specifically to aid a simulation model developer in capturing, representing and communicating information and systems issues to persons involved in the operation of discrete systems under investigation. A detailed review of the literature related to techniques capable of supporting the pre-simulation phases of a simulation project is presented. The main conclusion of this review is that there is a specific lack of support available to aid a simulation model developer in the pre-coding phases of a simulation project. Currently there are no process modelling techniques available that specifically support the pre-simulation phases of a discrete event simulation project. To attempt to overcome this shortfall the thesis discusses the development of a process modelling technique specifically developed to support the pre-simulation phases of a simulation project. Objectives in the development of this technique were to develop a technique that: 1. Is capable of capturing a detailed description of a Discrete Event System; 2. Has a low modelling burden and therefore is capable of being used by non specialists; 3. Presents modelling information at a high semantic level so that manufacturing personnel can rationalise with it; 4. Has good visualisation capabilities. The technique developed is called Simulation Activity Diagrams (SADs). To demonstrate the ability of the SAD technique to model discrete event information a prototype process modelling tool, Process Modelling for Simulation (PMS) was developed. An evaluation of the SAD technique is then presented through of a number of real and conceptual discrete event systems used to examine the techniques ability to accurately model information along with its ease of use and modelling accuracy. The thesis concludes that more research is required in validating and developing SADs and in developing other techniques in the pre-simulation area

    ICSEA 2021: the sixteenth international conference on software engineering advances

    Get PDF
    The Sixteenth International Conference on Software Engineering Advances (ICSEA 2021), held on October 3 - 7, 2021 in Barcelona, Spain, continued a series of events covering a broad spectrum of software-related topics. The conference covered fundamentals on designing, implementing, testing, validating and maintaining various kinds of software. The tracks treated the topics from theory to practice, in terms of methodologies, design, implementation, testing, use cases, tools, and lessons learnt. The conference topics covered classical and advanced methodologies, open source, agile software, as well as software deployment and software economics and education. The conference had the following tracks: Advances in fundamentals for software development Advanced mechanisms for software development Advanced design tools for developing software Software engineering for service computing (SOA and Cloud) Advanced facilities for accessing software Software performance Software security, privacy, safeness Advances in software testing Specialized software advanced applications Web Accessibility Open source software Agile and Lean approaches in software engineering Software deployment and maintenance Software engineering techniques, metrics, and formalisms Software economics, adoption, and education Business technology Improving productivity in research on software engineering Trends and achievements Similar to the previous edition, this event continued to be very competitive in its selection process and very well perceived by the international software engineering community. As such, it is attracting excellent contributions and active participation from all over the world. We were very pleased to receive a large amount of top quality contributions. We take here the opportunity to warmly thank all the members of the ICSEA 2021 technical program committee as well as the numerous reviewers. The creation of such a broad and high quality conference program would not have been possible without their involvement. We also kindly thank all the authors that dedicated much of their time and efforts to contribute to the ICSEA 2021. We truly believe that thanks to all these efforts, the final conference program consists of top quality contributions. This event could also not have been a reality without the support of many individuals, organizations and sponsors. We also gratefully thank the members of the ICSEA 2021 organizing committee for their help in handling the logistics and for their work that is making this professional meeting a success. We hope the ICSEA 2021 was a successful international forum for the exchange of ideas and results between academia and industry and to promote further progress in software engineering research

    A Language-centered Approach to support environmental modeling with Cellular Automata

    Get PDF
    Die Anwendung von Methodiken und Technologien aus dem Bereich der Softwaretechnik auf den Bereich der Umweltmodellierung ist eine gemeinhin akzeptierte Vorgehensweise. Im Rahmen der "modellgetriebenen Entwicklung"(MDE, model-driven engineering) werden Technologien entwickelt, die darauf abzielen, Softwaresysteme vorwiegend auf Basis von im Vergleich zu Programmquelltexten relativ abstrakten Modellen zu entwickeln. Ein wesentlicher Bestandteil von MDE sind Techniken zur effizienten Entwicklung von "domänenspezifischen Sprachen"( DSL, domain-specific language), die auf Sprachmetamodellen beruhen. Die vorliegende Arbeit zeigt, wie modellgetriebene Entwicklung, und insbesondere die metamodellbasierte Beschreibung von DSLs, darüber hinaus Aspekte der Pragmatik unterstützen kann, deren Relevanz im erkenntnistheoretischen und kognitiven Hintergrund wissenschaftlichen Forschens begründet wird. Hierzu wird vor dem Hintergrund der Erkenntnisse des "modellbasierten Forschens"(model-based science und model-based reasoning) gezeigt, wie insbesondere durch Metamodelle beschriebene DSLs Möglichkeiten bieten, entsprechende pragmatische Aspekte besonders zu berücksichtigen, indem sie als Werkzeug zur Erkenntnisgewinnung aufgefasst werden. Dies ist v.a. im Kontext großer Unsicherheiten, wie sie für weite Teile der Umweltmodellierung charakterisierend sind, von grundsätzlicher Bedeutung. Die Formulierung eines sprachzentrierten Ansatzes (LCA, language-centered approach) für die Werkzeugunterstützung konkretisiert die genannten Aspekte und bildet die Basis für eine beispielhafte Implementierung eines Werkzeuges mit einer DSL für die Beschreibung von Zellulären Automaten (ZA) für die Umweltmodellierung. Anwendungsfälle belegen die Verwendbarkeit von ECAL und der entsprechenden metamodellbasierten Werkzeugimplementierung.The application of methods and technologies of software engineering to environmental modeling and simulation (EMS) is common, since both areas share basic issues of software development and digital simulation. Recent developments within the context of "Model-driven Engineering" (MDE) aim at supporting the development of software systems at the base of relatively abstract models as opposed to programming language code. A basic ingredient of MDE is the development of methods that allow the efficient development of "domain-specific languages" (DSL), in particular at the base of language metamodels. This thesis shows how MDE and language metamodeling in particular, may support pragmatic aspects that reflect epistemic and cognitive aspects of scientific investigations. For this, DSLs and language metamodeling in particular are set into the context of "model-based science" and "model-based reasoning". It is shown that the specific properties of metamodel-based DSLs may be used to support those properties, in particular transparency, which are of particular relevance against the background of uncertainty, that is a characterizing property of EMS. The findings are the base for the formulation of an corresponding specific metamodel- based approach for the provision of modeling tools for EMS (Language-centered Approach, LCA), which has been implemented (modeling tool ECA-EMS), including a new DSL for CA modeling for EMS (ECAL). At the base of this implementation, the applicability of this approach is shown

    Application of Model-driven engineering to multi-agent systems: a language to model behaviors of reactive agents

    Get PDF
    Many users of multi-agent systems (MAS) are very commonly disinclined to model and simulate using current MAS platforms. More specifically, modeling the dynamics of a system (in particular the agents' behaviors) is very often a challenge to MAS users. This issue is more often observed in the domain of socio-ecological systems (SES), because SES domain experts are rarely programmers. Indeed, the majority of MAS platforms were not conceived taking into consideration domain-experts who are non-programmers. Most current MAS tools are not dedicated to SES, or nor do they possess an easily understandable formalism to represent the behaviors of agents. Moreover, because it is platform-dependent, a model realized in a given MAS platform cannot be properly used on another platform due to incompatibility between MAS platforms. To overcome these limitations, we propose a domain-specific language (DSL) to describe the behaviors of reactive agents, regardless of the MAS platform used for simulation. To achieve this result, we used model-driven engineering (MDE), an approach that provides tools to develop DSLs from a meta-model (abstract syntax), textual editors with syntax highlighting (for the concrete syntax) and code generation capabilities (for source-code generation of a model). As a result, we implemented a language and a textual editor that allow SES domain experts to describe behaviors in three different ways that are close to their natural expression: as equations when they are familiar with these, as a sequence of activities close to natural language or as an activity diagram to represent decisions and a sequence of behaviors using a graphic formalism. To demonstrate interoperability, we also developed code generators targeting two different MAS platforms (Cormas and Netlogo). We tested the code generators by implementing two SES models with the developed DSL. The generated code was targeted to both MAS platforms (Cormas and Netlogo), and successfully simulated in one of them. We conclude that the MDE approach provides adequate tools to develop DSL and code generators to facilitate MAS modeling and simulation by non-programmers. Concerning the DSL developed, although the behavioral aspect of MAS simulation is part of the complexity of modeling in MAS, there are still other essential aspects of model and simulation of MAS that are yet to be explored, such as model initialization and points of view on the model simulated worl

    Model-driven performance analysis of rule-based domain specific visual models

    Get PDF
    Context: Domain-Specific Visual Languages (DSVLs) play a crucial role in Model-Driven Engineering (MDE). Most DSVLs already allow the specification of the structure and behavior of systems. However, there is also an increasing need to model, simulate and reason about their non-functional properties. In particular, QoS usage and management constraints (performance, reliability, etc.) are essential characteristics of any non-trivial system. Objective: Very few DSVLs currently offer support for modeling these kinds of properties. And those which do, tend to require skilled knowledge of specialized notations, which clashes with the intuitive nature of DSVLs. In this paper we present an alternative approach to specify QoS properties in a high-level and platform-independent manner. Method: We propose the use of special objects (observers) that can be added to the graphical specification of a system for describing and monitoring some of its non-functional properties. Results: Observers allow extending the global state of the system with the variables that the designer wants to analyze, being able to capture the performance properties of interest. A performance evaluation tool has also been developed as a proof of concept for the proposal. Conclusion: The results show how non-functional properties can be specified in DSVLs using observers, and how the performance of systems specified in this way can be evaluated in a flexible and effective way.Ministerio de Ciencia e Innovación TIN2008-031087Ministerio de Ciencia e Innovación TIN2011-2379
    corecore