6,550 research outputs found

    Requirements engineering for intelligent environments

    Get PDF
    The field of Intelligent Environments (IE) is maturing to a level at which a range of sophisticated applications are emerging. Such systems aim to be context-aware, especially being adaptable to possibly unpredictable circumstances. An area of significant potential is that of ‘ambient assisted living’, with significant advances in fields such as smart spaces, classrooms, and assisted living space for the elderly or people with disabilities. In recent years, however, it has been recognised that numerous IE systems have been developed without adopting best practises from software engineering. The work presented here focuses on the requirements engineering stage and presents a framework for IE systems in which an intrinsic component is context-awareness. Whilst the framework is intended as a general IE model, we are currently applying it to the specific area of ambient assisted living and it is being employed on the POSEIDON project. It is anticipated that such real world application of the model will help endorse its conception and facilitate further refinement of the framework

    Surveying human habit modeling and mining techniques in smart spaces

    Get PDF
    A smart space is an environment, mainly equipped with Internet-of-Things (IoT) technologies, able to provide services to humans, helping them to perform daily tasks by monitoring the space and autonomously executing actions, giving suggestions and sending alarms. Approaches suggested in the literature may differ in terms of required facilities, possible applications, amount of human intervention required, ability to support multiple users at the same time adapting to changing needs. In this paper, we propose a Systematic Literature Review (SLR) that classifies most influential approaches in the area of smart spaces according to a set of dimensions identified by answering a set of research questions. These dimensions allow to choose a specific method or approach according to available sensors, amount of labeled data, need for visual analysis, requirements in terms of enactment and decision-making on the environment. Additionally, the paper identifies a set of challenges to be addressed by future research in the field

    Development of an ambient assisted living ecosystem

    Get PDF
    Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de ComputadoresThe society that we live in faces today big demographic changes. Nowadays, peo-ple live longer, and it is expected that this trend will proceed. In 2000, there were already 420 million people with more than 65 years old, which correspond to about 7% of the world population. In 2050, it is expected that this number reaches 1500 million which corresponds to about 16% of the world population. Naturally, in these circumstances, the number of disabled people will increase as well. This context brings new challenges to the traditional health care systems in Portugal and in the rest of the world. There is an urgent need to search for new solutions that will allow people to live in the best possible way, in the latest stages of life. In order to fulfill this need, it is necessary to develop systems that allow to extend their life in their favorite environment, improving their safety, autonomy, mobility and welfare. Nowadays, information and communication technologies (ICT) offer new opportunities to provide care and assistance. Ambient Assisted Living (AAL), is such a paradigm, in which technology is used as a way to improve the independ-ence and welfare of aged or disabled people at their homes. This dissertation has the purpose of contributing to providing an answer to this necessity, associated to a development of an ecosystem for Ambient Assisted Living, associated to a business model and the search for the possibility of collabo-rative networks creation, in order to look for efficient and accessible solutions for AAL services provision

    CONTEXT MANAGEMENT: TOWARD ASSESSING QUALITY OF CONTEXT PARAMETERS IN A UBIQUITOUS AMBIENT ASSISTED LIVING ENVIRONMENT

    Get PDF
    This paper provides an approach to assessing Quality of Context (QoC) parameters in a ubiquitous Ambient Assisted Living (AAL) environment. Initially, the study presents a literature review on QoC, generating taxonomy. Then it introduces the context management architecture used. The proposal is verified with the Siafu simulator in an AAL scenario where the user’s health is monitored with information about blood pressure, heart rate and body temperature. Considering some parameters, the proposed QoC assessment allows verifying the extent to which the context information is up-to-date, valid, accurate, complete and significant. The implementation of this proposal might mean a big social impact and a technological innovation applied to AAL, at the disposal and support of a significant number of individuals such as elderly or sick people, and with a more precise technology

    Integration of multisensor hybrid reasoners to support personal autonomy in the smart home.

    Get PDF
    The deployment of the Ambient Intelligence (AmI) paradigm requires designing and integrating user-centered smart environments to assist people in their daily life activities. This research paper details an integration and validation of multiple heterogeneous sensors with hybrid reasoners that support decision making in order to monitor personal and environmental data at a smart home in a private way. The results innovate on knowledge-based platforms, distributed sensors, connected objects, accessibility and authentication methods to promote independent living for elderly people. TALISMAN+, the AmI framework deployed, integrates four subsystems in the smart home: (i) a mobile biomedical telemonitoring platform to provide elderly patients with continuous disease management; (ii) an integration middleware that allows context capture from heterogeneous sensors to program environment¿s reaction; (iii) a vision system for intelligent monitoring of daily activities in the home; and (iv) an ontologies-based integrated reasoning platform to trigger local actions and manage private information in the smart home. The framework was integrated in two real running environments, the UPM Accessible Digital Home and MetalTIC house, and successfully validated by five experts in home care, elderly people and personal autonomy

    State of the art of audio- and video based solutions for AAL

    Get PDF
    Working Group 3. Audio- and Video-based AAL ApplicationsIt is a matter of fact that Europe is facing more and more crucial challenges regarding health and social care due to the demographic change and the current economic context. The recent COVID-19 pandemic has stressed this situation even further, thus highlighting the need for taking action. Active and Assisted Living (AAL) technologies come as a viable approach to help facing these challenges, thanks to the high potential they have in enabling remote care and support. Broadly speaking, AAL can be referred to as the use of innovative and advanced Information and Communication Technologies to create supportive, inclusive and empowering applications and environments that enable older, impaired or frail people to live independently and stay active longer in society. AAL capitalizes on the growing pervasiveness and effectiveness of sensing and computing facilities to supply the persons in need with smart assistance, by responding to their necessities of autonomy, independence, comfort, security and safety. The application scenarios addressed by AAL are complex, due to the inherent heterogeneity of the end-user population, their living arrangements, and their physical conditions or impairment. Despite aiming at diverse goals, AAL systems should share some common characteristics. They are designed to provide support in daily life in an invisible, unobtrusive and user-friendly manner. Moreover, they are conceived to be intelligent, to be able to learn and adapt to the requirements and requests of the assisted people, and to synchronise with their specific needs. Nevertheless, to ensure the uptake of AAL in society, potential users must be willing to use AAL applications and to integrate them in their daily environments and lives. In this respect, video- and audio-based AAL applications have several advantages, in terms of unobtrusiveness and information richness. Indeed, cameras and microphones are far less obtrusive with respect to the hindrance other wearable sensors may cause to one’s activities. In addition, a single camera placed in a room can record most of the activities performed in the room, thus replacing many other non-visual sensors. Currently, video-based applications are effective in recognising and monitoring the activities, the movements, and the overall conditions of the assisted individuals as well as to assess their vital parameters (e.g., heart rate, respiratory rate). Similarly, audio sensors have the potential to become one of the most important modalities for interaction with AAL systems, as they can have a large range of sensing, do not require physical presence at a particular location and are physically intangible. Moreover, relevant information about individuals’ activities and health status can derive from processing audio signals (e.g., speech recordings). Nevertheless, as the other side of the coin, cameras and microphones are often perceived as the most intrusive technologies from the viewpoint of the privacy of the monitored individuals. This is due to the richness of the information these technologies convey and the intimate setting where they may be deployed. Solutions able to ensure privacy preservation by context and by design, as well as to ensure high legal and ethical standards are in high demand. After the review of the current state of play and the discussion in GoodBrother, we may claim that the first solutions in this direction are starting to appear in the literature. A multidisciplinary 4 debate among experts and stakeholders is paving the way towards AAL ensuring ergonomics, usability, acceptance and privacy preservation. The DIANA, PAAL, and VisuAAL projects are examples of this fresh approach. This report provides the reader with a review of the most recent advances in audio- and video-based monitoring technologies for AAL. It has been drafted as a collective effort of WG3 to supply an introduction to AAL, its evolution over time and its main functional and technological underpinnings. In this respect, the report contributes to the field with the outline of a new generation of ethical-aware AAL technologies and a proposal for a novel comprehensive taxonomy of AAL systems and applications. Moreover, the report allows non-technical readers to gather an overview of the main components of an AAL system and how these function and interact with the end-users. The report illustrates the state of the art of the most successful AAL applications and functions based on audio and video data, namely (i) lifelogging and self-monitoring, (ii) remote monitoring of vital signs, (iii) emotional state recognition, (iv) food intake monitoring, activity and behaviour recognition, (v) activity and personal assistance, (vi) gesture recognition, (vii) fall detection and prevention, (viii) mobility assessment and frailty recognition, and (ix) cognitive and motor rehabilitation. For these application scenarios, the report illustrates the state of play in terms of scientific advances, available products and research project. The open challenges are also highlighted. The report ends with an overview of the challenges, the hindrances and the opportunities posed by the uptake in real world settings of AAL technologies. In this respect, the report illustrates the current procedural and technological approaches to cope with acceptability, usability and trust in the AAL technology, by surveying strategies and approaches to co-design, to privacy preservation in video and audio data, to transparency and explainability in data processing, and to data transmission and communication. User acceptance and ethical considerations are also debated. Finally, the potentials coming from the silver economy are overviewed.publishedVersio

    The safe administration of medication within the electromagnetic scenarios of the Internet of Things (IoT): looking towards the future

    Get PDF
    This paper has focused on analyzing the impact of Information and Communication Technologies (ICTs) to prevent or reduce errors during therapeutic drug administration. The methodology used has included scientific literature and marketed appliances reviews and laboratory tests on radiant devices. The role of the patient has been analyzed, both in terms of compliance with the prescribed treatments and user of technical solutions designed for administering medication. In addition, it has taken into account, how a future characterized by multiple technologies designed to support our daily routines, including health care, might affect the current model of relationship between health professionals and patients. Particular attention has been given to safety risks of ICTs in environments characterized by concurrent electromagnetic emissions operating at different frequencies. Implications and new scenarios from Internet of Things or IoT, have been considered, in light of the approach taken jointly by the European Commission and the European Technology Platform on Intelligent Systems Integration – EPoSS, in their 2008 report Internet of Things in 2020: a roadmap for the future, and how the concept has evolved since then.Chapter 1. Adverse drug events. Chapter 2. ICTs in everyday life and healthcare. Chapter 3. the challenge of electromagnetic safety. Chapter 4. ICTs in health care and in the prevention of medication errors: IoT. Chapter 5. A more effective and safer alternative approach. Chapter 6. Technological proposal 7. Conclusions.N
    • …
    corecore