77,514 research outputs found

    Differential-Algebraic Equations and Beyond: From Smooth to Nonsmooth Constrained Dynamical Systems

    Get PDF
    The present article presents a summarizing view at differential-algebraic equations (DAEs) and analyzes how new application fields and corresponding mathematical models lead to innovations both in theory and in numerical analysis for this problem class. Recent numerical methods for nonsmooth dynamical systems subject to unilateral contact and friction illustrate the topicality of this development.Comment: Preprint of Book Chapte

    Multivariate Residues and Maximal Unitarity

    Full text link
    We extend the maximal unitarity method to amplitude contributions whose cuts define multidimensional algebraic varieties. The technique is valid to all orders and is explicitly demonstrated at three loops in gauge theories with any number of fermions and scalars in the adjoint representation. Deca-cuts realized by replacement of real slice integration contours by higher-dimensional tori encircling the global poles are used to factorize the planar triple box onto a product of trees. We apply computational algebraic geometry and multivariate complex analysis to derive unique projectors for all master integral coefficients and obtain compact analytic formulae in terms of tree-level data.Comment: 34 pages, 3 figure

    Exploring the concept of interaction computing through the discrete algebraic analysis of the Belousov–Zhabotinsky reaction

    Get PDF
    Interaction computing (IC) aims to map the properties of integrable low-dimensional non-linear dynamical systems to the discrete domain of finite-state automata in an attempt to reproduce in software the self-organizing and dynamically stable properties of sub-cellular biochemical systems. As the work reported in this paper is still at the early stages of theory development it focuses on the analysis of a particularly simple chemical oscillator, the Belousov-Zhabotinsky (BZ) reaction. After retracing the rationale for IC developed over the past several years from the physical, biological, mathematical, and computer science points of view, the paper presents an elementary discussion of the Krohn-Rhodes decomposition of finite-state automata, including the holonomy decomposition of a simple automaton, and of its interpretation as an abstract positional number system. The method is then applied to the analysis of the algebraic properties of discrete finite-state automata derived from a simplified Petri net model of the BZ reaction. In the simplest possible and symmetrical case the corresponding automaton is, not surprisingly, found to contain exclusively cyclic groups. In a second, asymmetrical case, the decomposition is much more complex and includes five different simple non-abelian groups whose potential relevance arises from their ability to encode functionally complete algebras. The possible computational relevance of these findings is discussed and possible conclusions are drawn

    Two-loop Integral Reduction from Elliptic and Hyperelliptic Curves

    Get PDF
    We show that for a class of two-loop diagrams, the on-shell part of the integration-by-parts (IBP) relations correspond to exact meromorphic one-forms on algebraic curves. Since it is easy to find such exact meromorphic one-forms from algebraic geometry, this idea provides a new highly efficient algorithm for integral reduction. We demonstrate the power of this method via several complicated two-loop diagrams with internal massive legs. No explicit elliptic or hyperelliptic integral computation is needed for our method.Comment: minor changes: more references adde
    corecore