692 research outputs found

    Supporting Management lnteraction and Composition of Self-Managed Cells

    No full text
    Management in ubiquitous systems cannot rely on human intervention or centralised decision-making functions because systems are complex and devices are inherently mobile and cannot refer to centralised management applications for reconfiguration and adaptation directives. Management must be devolved, based on local decision-making and feedback control-loops embedded in autonomous components. Previous work has introduced a Self-Managed Cell (SMC) as an infrastructure for building ubiquitous applications. An SMC consists of a set of hardware and software components that implement a policy-driven feedback control-loop. This allows SMCs to adapt continually to changes in their environment or in their usage requirements. Typical applications include body-area networks for healthcare monitoring, and communities of unmanned autonomous vehicles (UAVs) for surveillance and reconnaissance operations. Ubiquitous applications are typically formed from multiple interacting autonomous components, which establish peer-to-peer collaborations, federate and compose into larger structures. Components must interact to distribute management tasks and to enforce communication strategies. This thesis presents an integrated framework which supports the design and the rapid establishment of policy-based SMC interactions by systematically composing simpler abstractions as building elements of a more complex collaboration. Policy-based interactions are realised – subject to an extensible set of security functions – through the exchanges of interfaces, policies and events, and our framework was designed to support the specification, instantiation and reuse of patterns of interaction that prescribe the manner in which these exchanges are achieved. We have defined a library of patterns that provide reusable abstractions for the structure, task-allocation and communication aspects of an interaction, which can be individually combined for building larger policy-based systems in a methodical manner. We have specified a formal model to ensure the rigorous verification of SMC interactions before policies are deployed in physical devices. A prototype has been implemented that demonstrates the practical feasibility of our framework in constrained resources

    An Experimental Digital Library Platform - A Demonstrator Prototype for the DigLib Project at SICS

    Get PDF
    Within the framework of the Digital Library project at SICS, this thesis describes the implementation of a demonstrator prototype of a digital library (DigLib); an experimental platform integrating several functions in one common interface. It includes descriptions of the structure and formats of the digital library collection, the tailoring of the search engine Dienst, the construction of a keyword extraction tool, and the design and development of the interface. The platform was realised through sicsDAIS, an agent interaction and presentation system, and is to be used for testing and evaluating various tools for information seeking. The platform supports various user interaction strategies by providing: search in bibliographic records (Dienst); an index of keywords (the Keyword Extraction Function (KEF)); and browsing through the hierarchical structure of the collection. KEF was developed for this thesis work, and extracts and presents keywords from Swedish documents. Although based on a comparatively simple algorithm, KEF contributes by supplying a long-felt want in the area of Information Retrieval. Evaluations of the tasks and the interface still remain to be done, but the digital library is very much up and running. By implementing the platform through sicsDAIS, DigLib can deploy additional tools and search engines without interfering with already running modules. If wanted, agents providing other services than SICS can supply, can be plugged in

    Semantic Programming for Device-Edge-Cloud Continuum

    Full text link
    This position paper presents ThothSP, a Semantic Programming framework with the aim of lowering the coding effort in building smart applications on the Device-Edge-Cloud continuum by leveraging semantic knowledge. It introduces a novel neural-symbolic stream fusion mechanism, which enables the specification of data fusion pipelines via declarative rules, with degrees of learnable probabilistic weights. Moreover, it includes an adaptive federator that allows the Thoth>runtime to be distributed across multiple compute nodes in a network, and to coordinate their resources to collaboratively process tasks by delegating partial workloads to their peers. To demonstrate ThothSP's capability, we report a case study on a distributed camera network to show ThothSP's behaviour against a traditional edge-cloud setup.Comment: arXiv admin note: text overlap with arXiv:2202.1395

    Pathways: Augmenting interoperability across scholarly repositories

    Full text link
    In the emerging eScience environment, repositories of papers, datasets, software, etc., should be the foundation of a global and natively-digital scholarly communications system. The current infrastructure falls far short of this goal. Cross-repository interoperability must be augmented to support the many workflows and value-chains involved in scholarly communication. This will not be achieved through the promotion of single repository architecture or content representation, but instead requires an interoperability framework to connect the many heterogeneous systems that will exist. We present a simple data model and service architecture that augments repository interoperability to enable scholarly value-chains to be implemented. We describe an experiment that demonstrates how the proposed infrastructure can be deployed to implement the workflow involved in the creation of an overlay journal over several different repository systems (Fedora, aDORe, DSpace and arXiv).Comment: 18 pages. Accepted for International Journal on Digital Libraries special issue on Digital Libraries and eScienc

    Data challenges of time domain astronomy

    Full text link
    Astronomy has been at the forefront of the development of the techniques and methodologies of data intensive science for over a decade with large sky surveys and distributed efforts such as the Virtual Observatory. However, it faces a new data deluge with the next generation of synoptic sky surveys which are opening up the time domain for discovery and exploration. This brings both new scientific opportunities and fresh challenges, in terms of data rates from robotic telescopes and exponential complexity in linked data, but also for data mining algorithms used in classification and decision making. In this paper, we describe how an informatics-based approach-part of the so-called "fourth paradigm" of scientific discovery-is emerging to deal with these. We review our experiences with the Palomar-Quest and Catalina Real-Time Transient Sky Surveys; in particular, addressing the issue of the heterogeneity of data associated with transient astronomical events (and other sensor networks) and how to manage and analyze it.Comment: 15 pages, 3 figures, to appear in special issue of Distributed and Parallel Databases on Data Intensive eScienc

    SPRINT: more runners, fewer hurdles

    Get PDF
    • …
    corecore