10,424 research outputs found

    How to compare treebanks

    Get PDF
    Recent years have seen an increasing interest in developing standards for linguistic annotation, with a focus on the interoperability of the resources. This effort, however, requires a profound knowledge of the advantages and disadvantages of linguistic annotation schemes in order to avoid importing the flaws and weaknesses of existing encoding schemes into the new standards. This paper addresses the question how to compare syntactically annotated corpora and gain insights into the usefulness of specific design decisions. We present an exhaustive evaluation of two German treebanks with crucially different encoding schemes. We evaluate three different parsers trained on the two treebanks and compare results using EVALB, the Leaf-Ancestor metric, and a dependency-based evaluation. Furthermore, we present TePaCoC, a new testsuite for the evaluation of parsers on complex German grammatical constructions. The testsuite provides a well thought-out error classification, which enables us to compare parser output for parsers trained on treebanks with different encoding schemes and provides interesting insights into the impact of treebank annotation schemes on specific constructions like PP attachment or non-constituent coordination

    Treebank-based acquisition of LFG parsing resources for French

    Get PDF
    Motivated by the expense in time and other resources to produce hand-crafted grammars, there has been increased interest in automatically obtained wide-coverage grammars from treebanks for natural language processing. In particular, recent years have seen the growth in interest in automatically obtained deep resources that can represent information absent from simple CFG-type structured treebanks and which are considered to produce more language-neutral linguistic representations, such as dependency syntactic trees. As is often the case in early pioneering work on natural language processing, English has provided the focus of first efforts towards acquiring deep-grammar resources, followed by successful treatments of, for example, German, Japanese, Chinese and Spanish. However, no comparable large-scale automatically acquired deep-grammar resources have been obtained for French to date. The goal of this paper is to present the application of treebank-based language acquisition to the case of French. We show that with modest changes to the established parsing architectures, encouraging results can be obtained for French, with a best dependency structure f-score of 86.73%

    Wide-coverage deep statistical parsing using automatic dependency structure annotation

    Get PDF
    A number of researchers (Lin 1995; Carroll, Briscoe, and Sanfilippo 1998; Carroll et al. 2002; Clark and Hockenmaier 2002; King et al. 2003; Preiss 2003; Kaplan et al. 2004;Miyao and Tsujii 2004) have convincingly argued for the use of dependency (rather than CFG-tree) representations for parser evaluation. Preiss (2003) and Kaplan et al. (2004) conducted a number of experiments comparing “deep” hand-crafted wide-coverage with “shallow” treebank- and machine-learning based parsers at the level of dependencies, using simple and automatic methods to convert tree output generated by the shallow parsers into dependencies. In this article, we revisit the experiments in Preiss (2003) and Kaplan et al. (2004), this time using the sophisticated automatic LFG f-structure annotation methodologies of Cahill et al. (2002b, 2004) and Burke (2006), with surprising results. We compare various PCFG and history-based parsers (based on Collins, 1999; Charniak, 2000; Bikel, 2002) to find a baseline parsing system that fits best into our automatic dependency structure annotation technique. This combined system of syntactic parser and dependency structure annotation is compared to two hand-crafted, deep constraint-based parsers (Carroll and Briscoe 2002; Riezler et al. 2002). We evaluate using dependency-based gold standards (DCU 105, PARC 700, CBS 500 and dependencies for WSJ Section 22) and use the Approximate Randomization Test (Noreen 1989) to test the statistical significance of the results. Our experiments show that machine-learning-based shallow grammars augmented with sophisticated automatic dependency annotation technology outperform hand-crafted, deep, widecoverage constraint grammars. Currently our best system achieves an f-score of 82.73% against the PARC 700 Dependency Bank (King et al. 2003), a statistically significant improvement of 2.18%over the most recent results of 80.55%for the hand-crafted LFG grammar and XLE parsing system of Riezler et al. (2002), and an f-score of 80.23% against the CBS 500 Dependency Bank (Carroll, Briscoe, and Sanfilippo 1998), a statistically significant 3.66% improvement over the 76.57% achieved by the hand-crafted RASP grammar and parsing system of Carroll and Briscoe (2002)

    Combining dependency parsing with PP attachment

    Get PDF
    Prepositional phrase (PP) attachment is one of the major sources for errors in traditional statistical parsers. The reason for that lies in the type of information necessary for resolving structural ambiguities. For parsing, it is assumed that distributional information of parts-of-speech and phrases is sufficient for disambiguation. For PP attachment, in contrast, lexical information is needed. The problem of PP attachment has sparked much interest ever since Hindle and Rooth (1993) formulated the problem in a way that can be easily handled by machine learning approaches: In their approach, PP attachment is reduced to the decision between noun and verb attachment; and the relevant information is reduced to the two possible attachment sites (the noun and the verb) and the preposition of the PP. Brill and Resnik (1994) extended the feature set to the now standard 4-tupel also containing the noun inside the PP. Among many publications on the problem of PP attachment, Volk (2001; 2002) describes the only system for German. He uses a combination of supervised and unsupervised methods. The supervised method is based on the back-off model by Collins and Brooks (1995), the unsupervised part consists of heuristics such as ”If there is a support verb construction present, choose verb attachment”. Volk trains his back-off model on the Negra treebank (Skut et al., 1998) and extracts frequencies for the heuristics from the ”Computerzeitung”. The latter also serves as test data set. Consequently, it is difficult to compare Volk’s results to other results for German, including the results presented here, since not only he uses a combination of supervised and unsupervised learning, but he also performs domain adaptation. Most of the researchers working on PP attachment seem to be satisfied with a PP attachment system; we have found hardly any work on integrating the results of such approaches into actual parsers. The only exceptions are Mehl et al. (1998) and Foth and Menzel (2006), both working with German data. Mehl et al. report a slight improvement of PP attachment from 475 correct PPs out of 681 PPs for the original parser to 481 PPs. Foth and Menzel report an improvement of overall accuracy from 90.7% to 92.2%. Both integrate statistical attachment preferences into a parser. First, we will investigate whether dependency parsing, which generally uses lexical information, shows the same performance on PP attachment as an independent PP attachment classifier does. Then we will investigate an approach that allows the integration of PP attachment information into the output of a parser without having to modify the parser: The results of an independent PP attachment classifier are integrated into the parse of a dependency parser for German in a postprocessing step

    Nightmare at test time: How punctuation prevents parsers from generalizing

    Full text link
    Punctuation is a strong indicator of syntactic structure, and parsers trained on text with punctuation often rely heavily on this signal. Punctuation is a diversion, however, since human language processing does not rely on punctuation to the same extent, and in informal texts, we therefore often leave out punctuation. We also use punctuation ungrammatically for emphatic or creative purposes, or simply by mistake. We show that (a) dependency parsers are sensitive to both absence of punctuation and to alternative uses; (b) neural parsers tend to be more sensitive than vintage parsers; (c) training neural parsers without punctuation outperforms all out-of-the-box parsers across all scenarios where punctuation departs from standard punctuation. Our main experiments are on synthetically corrupted data to study the effect of punctuation in isolation and avoid potential confounds, but we also show effects on out-of-domain data.Comment: Analyzing and interpreting neural networks for NLP, EMNLP 2018 worksho

    Parser evaluation across text types

    Get PDF
    When a statistical parser is trained on one treebank, one usually tests it on another portion of the same treebank, partly due to the fact that a comparable annotation format is needed for testing. But the user of a parser may not be interested in parsing sentences from the same newspaper all over, or even wants syntactic annotations for a slightly different text type. Gildea (2001) for instance found that a parser trained on the WSJ portion of the Penn Treebank performs less well on the Brown corpus (the subset that is available in the PTB bracketing format) than a parser that has been trained only on the Brown corpus, although the latter one has only half as many sentences as the former. Additionally, a parser trained on both the WSJ and Brown corpora performs less well on the Brown corpus than on the WSJ one. This leads us to the following questions that we would like to address in this paper: - Is there a difference in usefulness of techniques that are used to improve parser performance between the same-corpus and the different-corpus case? - Are different types of parsers (rule-based and statistical) equally sensitive to corpus variation? To achieve this, we compared the quality of the parses of a hand-crafted constraint-based parser and a statistical PCFG-based parser that was trained on a treebank of German newspaper text

    Treebank-based acquisition of LFG resources for Chinese

    Get PDF
    This paper presents a method to automatically acquire wide-coverage, robust, probabilistic Lexical-Functional Grammar resources for Chinese from the Penn Chinese Treebank (CTB). Our starting point is the earlier, proofof- concept work of (Burke et al., 2004) on automatic f-structure annotation, LFG grammar acquisition and parsing for Chinese using the CTB version 2 (CTB2). We substantially extend and improve on this earlier research as regards coverage, robustness, quality and fine-grainedness of the resulting LFG resources. We achieve this through (i) improved LFG analyses for a number of core Chinese phenomena; (ii) a new automatic f-structure annotation architecture which involves an intermediate dependency representation; (iii) scaling the approach from 4.1K trees in CTB2 to 18.8K trees in CTB version 5.1 (CTB5.1) and (iv) developing a novel treebank-based approach to recovering non-local dependencies (NLDs) for Chinese parser output. Against a new 200-sentence good standard of manually constructed f-structures, the method achieves 96.00% f-score for f-structures automatically generated for the original CTB trees and 80.01%for NLD-recovered f-structures generated for the trees output by Bikel’s parser

    From surface dependencies towards deeper semantic representations [Semantic representations]

    Get PDF
    In the past, a divide could be seen between ’deep’ parsers on the one hand, which construct a semantic representation out of their input, but usually have significant coverage problems, and more robust parsers on the other hand, which are usually based on a (statistical) model derived from a treebank and have larger coverage, but leave the problem of semantic interpretation to the user. More recently, approaches have emerged that combine the robustness of datadriven (statistical) models with more detailed linguistic interpretation such that the output could be used for deeper semantic analysis. Cahill et al. (2002) use a PCFG-based parsing model in combination with a set of principles and heuristics to derive functional (f-)structures of Lexical-Functional Grammar (LFG). They show that the derived functional structures have a better quality than those generated by a parser based on a state-of-the-art hand-crafted LFG grammar. Advocates of Dependency Grammar usually point out that dependencies already are a semantically meaningful representation (cf. Menzel, 2003). However, parsers based on dependency grammar normally create underspecified representations with respect to certain phenomena such as coordination, apposition and control structures. In these areas they are too "shallow" to be directly used for semantic interpretation. In this paper, we adopt a similar approach to Cahill et al. (2002) using a dependency-based analysis to derive functional structure, and demonstrate the feasibility of this approach using German data. A major focus of our discussion is on the treatment of coordination and other potentially underspecified structures of the dependency data input. F-structure is one of the two core levels of syntactic representation in LFG (Bresnan, 2001). Independently of surface order, it encodes abstract syntactic functions that constitute predicate argument structure and other dependency relations such as subject, predicate, adjunct, but also further semantic information such as the semantic type of an adjunct (e.g. directional). Normally f-structure is captured as a recursive attribute value matrix, which is isomorphic to a directed graph representation. Figure 5 depicts an example target f-structure. As mentioned earlier, these deeper-level dependency relations can be used to construct logical forms as in the approaches of van Genabith and Crouch (1996), who construct underspecified discourse representations (UDRSs), and Spreyer and Frank (2005), who have robust minimal recursion semantics (RMRS) as their target representation. We therefore think that f-structures are a suitable target representation for automatic syntactic analysis in a larger pipeline of mapping text to interpretation. In this paper, we report on the conversion from dependency structures to fstructure. Firstly, we evaluate the f-structure conversion in isolation, starting from hand-corrected dependencies based on the TüBa-D/Z treebank and Versley (2005)´s conversion. Secondly, we start from tokenized text to evaluate the combined process of automatic parsing (using Foth and Menzel (2006)´s parser) and f-structure conversion. As a test set, we randomly selected 100 sentences from TüBa-D/Z which we annotated using a scheme very close to that of the TiGer Dependency Bank (Forst et al., 2004). In the next section, we sketch dependency analysis, the underlying theory of our input representations, and introduce four different representations of coordination. We also describe Weighted Constraint Dependency Grammar (WCDG), the dependency parsing formalism that we use in our experiments. Section 3 characterises the conversion of dependencies to f-structures. Our evaluation is presented in section 4, and finally, section 5 summarises our results and gives an overview of problems remaining to be solved

    Dependency parsing of Turkish

    Get PDF
    The suitability of different parsing methods for different languages is an important topic in syntactic parsing. Especially lesser-studied languages, typologically different from the languages for which methods have originally been developed, poses interesting challenges in this respect. This article presents an investigation of data-driven dependency parsing of Turkish, an agglutinative free constituent order language that can be seen as the representative of a wider class of languages of similar type. Our investigations show that morphological structure plays an essential role in finding syntactic relations in such a language. In particular, we show that employing sublexical representations called inflectional groups, rather than word forms, as the basic parsing units improves parsing accuracy. We compare two different parsing methods, one based on a probabilistic model with beam search, the other based on discriminative classifiers and a deterministic parsing strategy, and show that the usefulness of sublexical units holds regardless of parsing method.We examine the impact of morphological and lexical information in detail and show that, properly used, this kind of information can improve parsing accuracy substantially. Applying the techniques presented in this article, we achieve the highest reported accuracy for parsing the Turkish Treebank
    • …
    corecore