607 research outputs found

    Semantic model-driven development of service-centric software architectures

    Get PDF
    Service-oriented architecture (SOA) is a recent architectural paradigm that has received much attention. The prevalent focus on platforms such as Web services, however, needs to be complemented by appropriate software engineering methods. We propose the model-driven development of service-centric software systems. We present in particular an investigation into the role of enriched semantic modelling for a modeldriven development framework for service-centric software systems. Ontologies as the foundations of semantic modelling and its enhancement through architectural pattern modelling are at the core of the proposed approach. We introduce foundations and discuss the benefits and also the challenges in this context

    Distribution pattern-driven development of service architectures

    Get PDF
    Distributed systems are being constructed by composing a number of discrete components. This practice is particularly prevalent within the Web service domain in the form of service process orchestration and choreography. Often, enterprise systems are built from many existing discrete applications such as legacy applications exposed using Web service interfaces. There are a number of architectural configurations or distribution patterns, which express how a composed system is to be deployed in a distributed environment. However, the amount of code required to realise these distribution patterns is considerable. In this paper, we propose a distribution pattern-driven approach to service composition and architecting. We develop, based on a catalog of patterns, a UML-compliant framework, which takes existing Web service interfaces as its input and generates executable Web service compositions based on a distribution pattern chosen by the software architect

    A Modeling Approach based on UML/MARTE for GPU Architecture

    Get PDF
    Nowadays, the High Performance Computing is part of the context of embedded systems. Graphics Processing Units (GPUs) are more and more used in acceleration of the most part of algorithms and applications. Over the past years, not many efforts have been done to describe abstractions of applications in relation to their target architectures. Thus, when developers need to associate applications and GPUs, for example, they find difficulty and prefer using API for these architectures. This paper presents a metamodel extension for MARTE profile and a model for GPU architectures. The main goal is to specify the task and data allocation in the memory hierarchy of these architectures. The results show that this approach will help to generate code for GPUs based on model transformations using Model Driven Engineering (MDE).Comment: Symposium en Architectures nouvelles de machines (SympA'14) (2011

    Ontology-based patterns for the integration of business processes and enterprise application architectures

    Get PDF
    Increasingly, enterprises are using Service-Oriented Architecture (SOA) as an approach to Enterprise Application Integration (EAI). SOA has the potential to bridge the gap between business and technology and to improve the reuse of existing applications and the interoperability with new ones. In addition to service architecture descriptions, architecture abstractions like patterns and styles capture design knowledge and allow the reuse of successfully applied designs, thus improving the quality of software. Knowledge gained from integration projects can be captured to build a repository of semantically enriched, experience-based solutions. Business patterns identify the interaction and structure between users, business processes, and data. Specific integration and composition patterns at a more technical level address enterprise application integration and capture reliable architecture solutions. We use an ontology-based approach to capture architecture and process patterns. Ontology techniques for pattern definition, extension and composition are developed and their applicability in business process-driven application integration is demonstrated

    A Model-Driven Architecture based Evolution Method and Its Application in An Electronic Learning System

    Get PDF
    Software products have been racing against aging problem for most of their lifecycles, and evolution is the most effective and efficient solution to this problem. Model-Driven Architecture (MDA) is a new technique for software product for evolving development and reengineering methods. The main steps for MDA are to establish models in different levels and phases, therefore to solve the challenges of requirement and technology change. However, there is only a standard established by Object Management Group (OMG) but without a formal method and approach. Presently, MDA is widely researched in both industrial and research areas, however, there is still without a smooth approach to realise it especially in electronic learning (e-learning) system due to the following reasons: (1) models’ transformations are hard to realise because of lack of tools, (2) most of existing mature research results are working for business and government services but not education area, and (3) most of existing model-driven researches are based on Model-Driven Development (MDD) but not MDA because of OMG standard’s preciseness. Hence, it is worth to investigate an MDA-based method and approach to improve the existing software development approach for e-learning system. Due to the features of MDA actuality, a MDA-based evolution method and approach is proposed in this thesis. The fundamental theories of this research are OMG’s MDA standard and education pedagogical knowledge. Unified Modelling Language (UML) and Unified Modelling Language Profile are hired to represent the information of software system from different aspects. This study can be divided into three main parts: MDA-based evolution method and approach research, Platform-Independent Model (PIM) to Platform-Specific Model (PSM) transformation development, and MDA-based electronic learning system evolution. Top-down approach is explored to develop models for e-learning system. A transformation approach is developed to generate Computation Independent Model (CIM), Platform-Independent Model (PIM), and Platform-Specific Model (PSM); while a set of transformation rules are defined following MDA standard to support PSM’ s generation. In addition, proposed method is applied in an e-learning system as a case study with the prototype rules support. In the end, conclusions are drawn based on analysis and further research directions are discussed as well. The kernel contributions are the proposed transformation rules and its application in electronic learning system

    Architecting Embedded Software for Context-Aware Systems

    Get PDF

    A service-oriented cloud modeling method and process

    Get PDF
    The transition of software development from web to cloud has been accelerated. The development of cloud services requires a modeling method that reflects the characteristics of cloud including personalized service, resource sharing service, grouped and distributed services, and cross-platform operability. This study aimed to suggest a method of developing UML-based cloud services suitable for the characteristics of cloud services. A cloud service metamodel was defined using cloud applications’ characteristic modeling elements, and after that, how these cloud modeling elements are expressed into UML modeling elements was defined with an integrated metamodel between cloud and UML. By applying this hierarchical cloud metamodel, an MDA and MVC-based service-oriented cloud modeling process was established. By doing so, it will be possible to easily design services (applications) and solutions that are suitable for cloud computing environments, and in particular, to create hierarchical reuse models by the level of the abstraction of model-driven development

    Metamodel-based model conformance and multiview consistency checking

    Get PDF
    Model-driven development, using languages such as UML and BON, often makes use of multiple diagrams (e.g., class and sequence diagrams) when modeling systems. These diagrams, presenting different views of a system of interest, may be inconsistent. A metamodel provides a unifying framework in which to ensure and check consistency, while at the same time providing the means to distinguish between valid and invalid models, that is, conformance. Two formal specifications of the metamodel for an object-oriented modeling language are presented, and it is shown how to use these specifications for model conformance and multiview consistency checking. Comparisons are made in terms of completeness and the level of automation each provide for checking multiview consistency and model conformance. The lessons learned from applying formal techniques to the problems of metamodeling, model conformance, and multiview consistency checking are summarized
    • …
    corecore