158,356 research outputs found

    An ontology framework for developing platform-independent knowledge-based engineering systems in the aerospace industry

    Get PDF
    This paper presents the development of a novel knowledge-based engineering (KBE) framework for implementing platform-independent knowledge-enabled product design systems within the aerospace industry. The aim of the KBE framework is to strengthen the structure, reuse and portability of knowledge consumed within KBE systems in view of supporting the cost-effective and long-term preservation of knowledge within such systems. The proposed KBE framework uses an ontology-based approach for semantic knowledge management and adopts a model-driven architecture style from the software engineering discipline. Its phases are mainly (1) Capture knowledge required for KBE system; (2) Ontology model construct of KBE system; (3) Platform-independent model (PIM) technology selection and implementation and (4) Integration of PIM KBE knowledge with computer-aided design system. A rigorous methodology is employed which is comprised of five qualitative phases namely, requirement analysis for the KBE framework, identifying software and ontological engineering elements, integration of both elements, proof of concept prototype demonstrator and finally experts validation. A case study investigating four primitive three-dimensional geometry shapes is used to quantify the applicability of the KBE framework in the aerospace industry. Additionally, experts within the aerospace and software engineering sector validated the strengths/benefits and limitations of the KBE framework. The major benefits of the developed approach are in the reduction of man-hours required for developing KBE systems within the aerospace industry and the maintainability and abstraction of the knowledge required for developing KBE systems. This approach strengthens knowledge reuse and eliminates platform-specific approaches to developing KBE systems ensuring the preservation of KBE knowledge for the long term

    A review of information flow diagrammatic models for product-service systems

    Get PDF
    A product-service system (PSS) is a combination of products and services to create value for both customers and manufacturers. Modelling a PSS based on function orientation offers a useful way to distinguish system inputs and outputs with regards to how data are consumed and information is used, i.e. information flow. This article presents a review of diagrammatic information flow tools, which are designed to describe a system through its functions. The origin, concept and applications of these tools are investigated, followed by an analysis of information flow modelling with regards to key PSS properties. A case study of selection laser melting technology implemented as PSS will then be used to show the application of information flow modelling for PSS design. A discussion based on the usefulness of the tools in modelling the key elements of PSS and possible future research directions are also presented

    Requirements engineering for computer integrated environments in construction

    Get PDF
    A Computer Integrated Environment (CIE) is the type of innovative integrated information system that helps to reduce fragmentation and enables the stakeholders to collaborate together in business. Researchers have observed that the concept of CIE has been the subject of research for many years but the uptake of this technology has been very limited because of the development of the technology and its effective implementation. Although CIE is very much valued by both industrialists and academics, the answers to the question of how to develop and how to implement it are still not clear. The industrialists and researchers conveyed that networking, collaboration, information sharing and communication will become popular and critical issues in the future, which can be managed through CIE systems. In order for successful development of the technology, successful delivery, and effective implementation of user and industry-oriented CIE systems, requirements engineering seems a key parameter. Therefore, through experiences and lessons learnt in various case studies of CIE systems developments, this book explains the development of a requirements engineering framework specific to the CIE system. The requirements engineering process that has been developed in the research is targeted at computer integrated environments with a particular interest in the construction industry as the implementation field. The key features of the requirements engineering framework are the following: (1) ready-to-use, (2) simple, (3) domain specific, (4) adaptable and (5) systematic, (6) integrated with the legacy systems. The method has three key constructs: i) techniques for requirements development, which includes the requirement elicitation, requirements analysis/modelling and requirements validation, ii) requirements documentation and iii) facilitating the requirements management. It focuses on system development methodologies for the human driven ICT solutions that provide communication, collaboration, information sharing and exchange through computer integrated environments for professionals situated in discrete locations but working in a multidisciplinary and interdisciplinary environment. The overview for each chapter of the book is as follows; Chapter 1 provides an overview by setting the scene and presents the issues involved in requirements engineering and CIE (Computer Integrated Environments). Furthermore, it makes an introduction to the necessity for requirements engineering for CIE system development, experiences and lessons learnt cumulatively from CIE systems developments that the authors have been involved in, and the process of the development of an ideal requirements engineering framework for CIE systems development, based on the experiences and lessons learnt from the multi-case studies. Chapter 2 aims at building up contextual knowledge to acquire a deeper understanding of the topic area. This includes a detailed definition of the requirements engineering discipline and the importance and principles of requirements engineering and its process. In addition, state of the art techniques and approaches, including contextual design approach, the use case modelling, and the agile requirements engineering processes, are explained to provide contextual knowledge and understanding about requirements engineering to the readers. After building contextual knowledge and understanding about requirements engineering in chapter 2, chapter 3 attempts to identify a scope and contextual knowledge and understanding about computer integrated environments and Building Information Modelling (BIM). In doing so, previous experiences of the authors about systems developments for computer integrated environments are explained in detail as the CIE/BIM case studies. In the light of contextual knowledge gained about requirements engineering in chapter 2, in order to realize the critical necessity of requirements engineering to combine technology, process and people issues in the right balance, chapter 4 will critically evaluate the requirements engineering activities of CIE systems developments that are explained in chapter 3. Furthermore, to support the necessity of requirements engineering for human centred CIE systems development, the findings from semi-structured interviews are shown in a concept map that is also explained in this chapter. In chapter 5, requirements engineering is investigated from different angles to pick up the key issues from discrete research studies and practice such as traceability through process and product modelling, goal-oriented requirements engineering, the essential and incidental complexities in requirements models, the measurability of quality requirements, the fundamentals of requirements engineering, identifying and involving the stakeholders, reconciling software requirements and system architectures and barriers to the industrial uptake of requirements engineering. In addition, a comprehensive research study measuring the success of requirements engineering processes through a set of evaluation criteria is introduced. Finally, the key issues and the criteria are comparatively analyzed and evaluated in order to match each other and confirm the validity of the criteria for the evaluation and assessment of the requirements engineering implementation in the CIE case study projects in chapter 7 and the key issues will be used in chapter 9 to support the CMM (Capability Maturity Model) for acceptance and wider implications of the requirements engineering framework to be proposed in chapter 8. Chapter 6 explains and particularly focuses on how the requirements engineering activities in the case study projects were handled by highlighting strengths and weaknesses. This will also include the experiences and lessons learnt from these system development practices. The findings from these developments will also be utilized to support the justification of the necessity of a requirements engineering framework for the CIE systems developments. In particular, the following are addressed. • common and shared understanding in requirements engineering efforts, • continuous improvement, • outputs of requirement engineering • reflections and the critical analysis of the requirements engineering approaches in these practices. The premise of chapter 7 is to evaluate and assess the requirements engineering approaches in the CIE case study developments from multiple viewpoints in order to find out the strengths and the weaknesses in these requirements engineering processes. This evaluation will be mainly based on the set of criteria developed by the researchers and developers in the requirements engineering community in order to measure the success rate of the requirements engineering techniques after their implementation in the various system development projects. This set of criteria has already been introduced in chapter 5. This critical assessment includes conducting a questionnaire based survey and descriptive statistical analysis. In chapter 8, the requirements engineering techniques tested in the CIE case study developments are composed and compiled into a requirements engineering process in the light of the strengths and the weaknesses identified in the previous chapter through benchmarking with a Capability Maturity Model (CMM) to ensure that it has the required level of maturity for implementation in the CIE systems developments. As a result of this chapter, a framework for a generic requirements engineering process for CIE systems development will be proposed. In chapter 9, the authors will discuss the acceptance and the wider implications of the proposed framework of requirements engineering process using the CMM from chapter 8 and the key issues from chapter 5. Chapter 10 is the concluding chapter and it summarizes the findings and brings the book to a close with recommendations for the implementation of the Proposed RE framework and also prescribes a guideline as a way forward for better implementation of requirements engineering for successful developments of the CIE systems in the future

    Engineering simulations for cancer systems biology

    Get PDF
    Computer simulation can be used to inform in vivo and in vitro experimentation, enabling rapid, low-cost hypothesis generation and directing experimental design in order to test those hypotheses. In this way, in silico models become a scientific instrument for investigation, and so should be developed to high standards, be carefully calibrated and their findings presented in such that they may be reproduced. Here, we outline a framework that supports developing simulations as scientific instruments, and we select cancer systems biology as an exemplar domain, with a particular focus on cellular signalling models. We consider the challenges of lack of data, incomplete knowledge and modelling in the context of a rapidly changing knowledge base. Our framework comprises a process to clearly separate scientific and engineering concerns in model and simulation development, and an argumentation approach to documenting models for rigorous way of recording assumptions and knowledge gaps. We propose interactive, dynamic visualisation tools to enable the biological community to interact with cellular signalling models directly for experimental design. There is a mismatch in scale between these cellular models and tissue structures that are affected by tumours, and bridging this gap requires substantial computational resource. We present concurrent programming as a technology to link scales without losing important details through model simplification. We discuss the value of combining this technology, interactive visualisation, argumentation and model separation to support development of multi-scale models that represent biologically plausible cells arranged in biologically plausible structures that model cell behaviour, interactions and response to therapeutic interventions

    Ontology-based patterns for the integration of business processes and enterprise application architectures

    Get PDF
    Increasingly, enterprises are using Service-Oriented Architecture (SOA) as an approach to Enterprise Application Integration (EAI). SOA has the potential to bridge the gap between business and technology and to improve the reuse of existing applications and the interoperability with new ones. In addition to service architecture descriptions, architecture abstractions like patterns and styles capture design knowledge and allow the reuse of successfully applied designs, thus improving the quality of software. Knowledge gained from integration projects can be captured to build a repository of semantically enriched, experience-based solutions. Business patterns identify the interaction and structure between users, business processes, and data. Specific integration and composition patterns at a more technical level address enterprise application integration and capture reliable architecture solutions. We use an ontology-based approach to capture architecture and process patterns. Ontology techniques for pattern definition, extension and composition are developed and their applicability in business process-driven application integration is demonstrated

    Past, present and future of information and knowledge sharing in the construction industry: Towards semantic service-based e-construction

    Get PDF
    The paper reviews product data technology initiatives in the construction sector and provides a synthesis of related ICT industry needs. A comparison between (a) the data centric characteristics of Product Data Technology (PDT) and (b) ontology with a focus on semantics, is given, highlighting the pros and cons of each approach. The paper advocates the migration from data-centric application integration to ontology-based business process support, and proposes inter-enterprise collaboration architectures and frameworks based on semantic services, underpinned by ontology-based knowledge structures. The paper discusses the main reasons behind the low industry take up of product data technology, and proposes a preliminary roadmap for the wide industry diffusion of the proposed approach. In this respect, the paper stresses the value of adopting alliance-based modes of operation

    Practitioner requirements for integrated Knowledge-Based Engineering in Product Lifecycle Management.

    No full text
    The effective management of knowledge as capital is considered essential to the success of engineering product/service systems. As Knowledge Management (KM) and Product Lifecycle Management (PLM) practice gain industrial adoption, the question of functional overlaps between both the approaches becomes evident. This article explores the interoperability between PLM and Knowledge-Based Engineering (KBE) as a strategy for engineering KM. The opinion of key KBE/PLM practitioners are systematically captured and analysed. A set of ranked business functionalities to be fulfiled by the KBE/PLM systems integration is elicited. The article provides insights for the researchers and the practitioners playing both the user and development roles on the future needs for knowledge systems based on PLM

    A requirements engineering framework for integrated systems development for the construction industry

    Get PDF
    Computer Integrated Construction (CIC) systems are computer environments through which collaborative working can be undertaken. Although many CIC systems have been developed to demonstrate the communication and collaboration within the construction projects, the uptake of CICs by the industry is still inadequate. This is mainly due to the fact that research methodologies of the CIC development projects are incomplete to bridge the technology transfer gap. Therefore, defining comprehensive methodologies for the development of these systems and their effective implementation on real construction projects is vital. Requirements Engineering (RE) can contribute to the effective uptake of these systems because it drives the systems development for the targeted audience. This paper proposes a requirements engineering approach for industry driven CIC systems development. While some CIC systems are investigated to build a broad and deep contextual knowledge in the area, the EU funded research project, DIVERCITY (Distributed Virtual Workspace for Enhancing Communication within the Construction Industry), is analysed as the main case study project because its requirements engineering approach has the potential to determine a framework for the adaptation of requirements engineering in order to contribute towards the uptake of CIC systems

    Coordination approaches and systems - part I : a strategic perspective

    Get PDF
    This is the first part of a two-part paper presenting a fundamental review and summary of research of design coordination and cooperation technologies. The theme of this review is aimed at the research conducted within the decision management aspect of design coordination. The focus is therefore on the strategies involved in making decisions and how these strategies are used to satisfy design requirements. The paper reviews research within collaborative and coordinated design, project and workflow management, and, task and organization models. The research reviewed has attempted to identify fundamental coordination mechanisms from different domains, however it is concluded that domain independent mechanisms need to be augmented with domain specific mechanisms to facilitate coordination. Part II is a review of design coordination from an operational perspective

    Agents in Bioinformatics

    No full text
    The scope of the Technical Forum Group (TFG) on Agents in Bioinformatics (BIOAGENTS) was to inspire collaboration between the agent and bioinformatics communities with the aim of creating an opportunity to propose a different (agent-based) approach to the development of computational frameworks both for data analysis in bioinformatics and for system modelling in computational biology. During the day, the participants examined the future of research on agents in bioinformatics primarily through 12 invited talks selected to cover the most relevant topics. From the discussions, it became clear that there are many perspectives to the field, ranging from bio-conceptual languages for agent-based simulation, to the definition of bio-ontology-based declarative languages for use by information agents, and to the use of Grid agents, each of which requires further exploration. The interactions between participants encouraged the development of applications that describe a way of creating agent-based simulation models of biological systems, starting from an hypothesis and inferring new knowledge (or relations) by mining and analysing the huge amount of public biological data. In this report we summarise and reflect on the presentations and discussions
    corecore