39,824 research outputs found

    Semantic data mining and linked data for a recommender system in the AEC industry

    Get PDF
    Even though it can provide design teams with valuable performance insights and enhance decision-making, monitored building data is rarely reused in an effective feedback loop from operation to design. Data mining allows users to obtain such insights from the large datasets generated throughout the building life cycle. Furthermore, semantic web technologies allow to formally represent the built environment and retrieve knowledge in response to domain-specific requirements. Both approaches have independently established themselves as powerful aids in decision-making. Combining them can enrich data mining processes with domain knowledge and facilitate knowledge discovery, representation and reuse. In this article, we look into the available data mining techniques and investigate to what extent they can be fused with semantic web technologies to provide recommendations to the end user in performance-oriented design. We demonstrate an initial implementation of a linked data-based system for generation of recommendations

    Development of Semantics-Based Distributed Middleware for Heterogeneous Data Integration and its Application for Drought

    Get PDF
    ThesisDrought is a complex environmental phenomenon that affects millions of people and communities all over the globe and is too elusive to be accurately predicted. This is mostly due to the scalability and variability of the web of environmental parameters that directly/indirectly causes the onset of different categories of drought. Since the dawn of man, efforts have been made to uniquely understand the natural indicators that provide signs of likely environmental events. These indicators/signs in the form of indigenous knowledge system have been used for generations. Also, since the dawn of modern science, different drought prediction and forecasting models/indices have been developed which usually incorporate data from sparsely located weather stations in their computation, producing less accurate results – due to lack of the desired scalability in the input datasets. The intricate complexity of drought has, however, always been a major stumbling block for accurate drought prediction and forecasting systems. Recently, scientists in the field of ethnoecology, agriculture and environmental monitoring have been discussing the integration of indigenous knowledge and scientific knowledge for a more accurate environmental forecasting system in order to incorporate diverse environmental information for a reliable drought forecast. Hence, in this research, the core objective is the development of a semantics-based data integration middleware that encompasses and integrates heterogeneous data models of local indigenous knowledge and sensor data towards an accurate drought forecasting system for the study areas of the KwaZulu-Natal province of South Africa and Mbeere District of Kenya. For the study areas, the local indigenous knowledge on drought gathered from the domain experts and local elderly farmers, is transformed into rules to be used for performing deductive inference in conjunction with sensors data for determining the onset of drought through an automated inference generation module of the middleware. The semantic middleware incorporates, inter alia, a distributed architecture that consists of a streaming data processing engine based on Apache Kafka for real-time stream processing; a rule-based reasoning module; an ontology module for semantic representation of the knowledge bases. The plethora of sub-systems in the semantic middleware produce a service(s) as a combined output – in the form of drought forecast advisory information (DFAI). The DFAI as an output of the semantic middleware is disseminated across multiple channels for utilisation by policy-makers to develop mitigation strategies to combat the effect of drought and their drought-related decision-making processes

    Views from the coalface: chemo-sensors, sensor networks and the semantic sensor web

    Get PDF
    Currently millions of sensors are being deployed in sensor networks across the world. These networks generate vast quantities of heterogeneous data across various levels of spatial and temporal granularity. Sensors range from single-point in situ sensors to remote satellite sensors which can cover the globe. The semantic sensor web in principle should allow for the unification of the web with the real-word. In this position paper, we discuss the major challenges to this unification from the perspective of sensor developers (especially chemo-sensors) and integrating sensors data in real-world deployments. These challenges include: (1) identifying the quality of the data; (2) heterogeneity of data sources and data transport methods; (3) integrating data streams from different sources and modalities (esp. contextual information), and (4) pushing intelligence to the sensor level

    Semantic-driven Configuration of Internet of Things Middleware

    Get PDF
    We are currently observing emerging solutions to enable the Internet of Things (IoT). Efficient and feature rich IoT middeware platforms are key enablers for IoT. However, due to complexity, most of these middleware platforms are designed to be used by IT experts. In this paper, we propose a semantics-driven model that allows non-IT experts (e.g. plant scientist, city planner) to configure IoT middleware components easier and faster. Such tools allow them to retrieve the data they want without knowing the underlying technical details of the sensors and the data processing components. We propose a Context Aware Sensor Configuration Model (CASCoM) to address the challenge of automated context-aware configuration of filtering, fusion, and reasoning mechanisms in IoT middleware according to the problems at hand. We incorporate semantic technologies in solving the above challenges. We demonstrate the feasibility and the scalability of our approach through a prototype implementation based on an IoT middleware called Global Sensor Networks (GSN), though our model can be generalized into any other middleware platform. We evaluate CASCoM in agriculture domain and measure both performance in terms of usability and computational complexity.Comment: 9th International Conference on Semantics, Knowledge & Grids (SKG), Beijing, China, October, 201

    When Things Matter: A Data-Centric View of the Internet of Things

    Full text link
    With the recent advances in radio-frequency identification (RFID), low-cost wireless sensor devices, and Web technologies, the Internet of Things (IoT) approach has gained momentum in connecting everyday objects to the Internet and facilitating machine-to-human and machine-to-machine communication with the physical world. While IoT offers the capability to connect and integrate both digital and physical entities, enabling a whole new class of applications and services, several significant challenges need to be addressed before these applications and services can be fully realized. A fundamental challenge centers around managing IoT data, typically produced in dynamic and volatile environments, which is not only extremely large in scale and volume, but also noisy, and continuous. This article surveys the main techniques and state-of-the-art research efforts in IoT from data-centric perspectives, including data stream processing, data storage models, complex event processing, and searching in IoT. Open research issues for IoT data management are also discussed

    City Data Fusion: Sensor Data Fusion in the Internet of Things

    Full text link
    Internet of Things (IoT) has gained substantial attention recently and play a significant role in smart city application deployments. A number of such smart city applications depend on sensor fusion capabilities in the cloud from diverse data sources. We introduce the concept of IoT and present in detail ten different parameters that govern our sensor data fusion evaluation framework. We then evaluate the current state-of-the art in sensor data fusion against our sensor data fusion framework. Our main goal is to examine and survey different sensor data fusion research efforts based on our evaluation framework. The major open research issues related to sensor data fusion are also presented.Comment: Accepted to be published in International Journal of Distributed Systems and Technologies (IJDST), 201

    A Survey on IT-Techniques for a Dynamic Emergency Management in Large Infrastructures

    Get PDF
    This deliverable is a survey on the IT techniques that are relevant to the three use cases of the project EMILI. It describes the state-of-the-art in four complementary IT areas: Data cleansing, supervisory control and data acquisition, wireless sensor networks and complex event processing. Even though the deliverable’s authors have tried to avoid a too technical language and have tried to explain every concept referred to, the deliverable might seem rather technical to readers so far little familiar with the techniques it describes
    corecore