5,515 research outputs found

    Intelligent multi-sensor integrations

    Get PDF
    Growth in the intelligence of space systems requires the use and integration of data from multiple sensors. Generic tools are being developed for extracting and integrating information obtained from multiple sources. The full spectrum is addressed for issues ranging from data acquisition, to characterization of sensor data, to adaptive systems for utilizing the data. In particular, there are three major aspects to the project, multisensor processing, an adaptive approach to object recognition, and distributed sensor system integration

    Fast GPU Accelerated Stereo Correspondence for Embedded Surveillance Camera Systems

    Get PDF
    Many surveillance applications could benefit from the use of stereo cam- eras for depth perception. While state-of-the-art methods provide high quality scene depth information, many of the methods are very time consuming and not suitable for real-time usage in limited embedded systems. This study was conducted to examine stereo correlation methods to find a suitable algorithm for real-time or near real-time depth perception through disparity maps in a stereo video surveillance camera with an embedded GPU. Moreover, novel refinements and alternations was investigated to further improve performance and quality. Quality tests were conducted in Octave while GPU suitability and performance tests were done in C++ with the OpenGL ES 2.0 library. The result is a local stereo correlation method using Normalized Cross Correlation together with sparse support windows and a suggested improvement for pixel-wise matching confidence. Applying sparse support windows increased frame rate by 35% with minimal quality penalty as compared to using full support windows

    Towards binocular active vision in a robot head system

    Get PDF
    This paper presents the first results of an investigation and pilot study into an active, binocular vision system that combines binocular vergence, object recognition and attention control in a unified framework. The prototype developed is capable of identifying, targeting, verging on and recognizing objects in a highly-cluttered scene without the need for calibration or other knowledge of the camera geometry. This is achieved by implementing all image analysis in a symbolic space without creating explicit pixel-space maps. The system structure is based on the ‘searchlight metaphor’ of biological systems. We present results of a first pilot investigation that yield a maximum vergence error of 6.4 pixels, while seven of nine known objects were recognized in a high-cluttered environment. Finally a “stepping stone” visual search strategy was demonstrated, taking a total of 40 saccades to find two known objects in the workspace, neither of which appeared simultaneously within the Field of View resulting from any individual saccade

    Event-based Vision: A Survey

    Get PDF
    Event cameras are bio-inspired sensors that differ from conventional frame cameras: Instead of capturing images at a fixed rate, they asynchronously measure per-pixel brightness changes, and output a stream of events that encode the time, location and sign of the brightness changes. Event cameras offer attractive properties compared to traditional cameras: high temporal resolution (in the order of microseconds), very high dynamic range (140 dB vs. 60 dB), low power consumption, and high pixel bandwidth (on the order of kHz) resulting in reduced motion blur. Hence, event cameras have a large potential for robotics and computer vision in challenging scenarios for traditional cameras, such as low-latency, high speed, and high dynamic range. However, novel methods are required to process the unconventional output of these sensors in order to unlock their potential. This paper provides a comprehensive overview of the emerging field of event-based vision, with a focus on the applications and the algorithms developed to unlock the outstanding properties of event cameras. We present event cameras from their working principle, the actual sensors that are available and the tasks that they have been used for, from low-level vision (feature detection and tracking, optic flow, etc.) to high-level vision (reconstruction, segmentation, recognition). We also discuss the techniques developed to process events, including learning-based techniques, as well as specialized processors for these novel sensors, such as spiking neural networks. Additionally, we highlight the challenges that remain to be tackled and the opportunities that lie ahead in the search for a more efficient, bio-inspired way for machines to perceive and interact with the world

    Design of a Real-time Image-based Distance Sensing System by Stereo Vision on FPGA

    Get PDF
    A stereo vision system is a robust method to sense the distance information in a scene. This research explores the stereo vision system from the fundamentals of stereo vision and the computer stereo vision algorithm to the final implementation of the system on a FPGA chip. In a stereo vision system, images are captured by a pair of stereo image sensors. The distance information can be derived from the disparities between the stereo image pair, based on the theory of binocular geometry. With the increasing focus on 3D vision, stereo vision is becoming a hot topic in the areas of computer games, robot vision and medical applications. Particularly, most stereo vision systems are expected to be used in real-time applications. In this thesis, several stereo correspondence algorithms that determine the disparities between stereo image pair are examined. The algorithms can be categorized into global stereo algorithms and local stereo algorithms depending on the optimization techniques. The global algorithms examined are the Dynamic Time Warp (DTW) algorithm and the DTW with quantization algorithm, while the local algorithms examined are the window based Sum of Squared Differences (SSD), Sum of Absolute Differences (SAD) and Census transform correlation algorithms. With analysis among them, the window based SAD correlation algorithm is proposed for implementation on a FPGA platform. The proposed algorithm is implemented onto an Altera DE2 board featuring an Altera Cyclone II 2C35 FPGA. The implemented module of the algorithm is simulated using ModelSim-Altera to verify the correctness of its functionality. Along with a pair of stere image sensors and a LCD monitor, a stereo vision system is built. The entire system realizes a real-time video frame rate of 16.83 frames per second with an image resolution of 640 by 480 and produces disparity maps in which the objects are clearly distinguished by their relative distance information
    corecore