4,274 research outputs found

    Edge-Cloud Polarization and Collaboration: A Comprehensive Survey for AI

    Full text link
    Influenced by the great success of deep learning via cloud computing and the rapid development of edge chips, research in artificial intelligence (AI) has shifted to both of the computing paradigms, i.e., cloud computing and edge computing. In recent years, we have witnessed significant progress in developing more advanced AI models on cloud servers that surpass traditional deep learning models owing to model innovations (e.g., Transformers, Pretrained families), explosion of training data and soaring computing capabilities. However, edge computing, especially edge and cloud collaborative computing, are still in its infancy to announce their success due to the resource-constrained IoT scenarios with very limited algorithms deployed. In this survey, we conduct a systematic review for both cloud and edge AI. Specifically, we are the first to set up the collaborative learning mechanism for cloud and edge modeling with a thorough review of the architectures that enable such mechanism. We also discuss potentials and practical experiences of some on-going advanced edge AI topics including pretraining models, graph neural networks and reinforcement learning. Finally, we discuss the promising directions and challenges in this field.Comment: 20 pages, Transactions on Knowledge and Data Engineerin

    APQ: Joint Search for Network Architecture, Pruning and Quantization Policy

    Full text link
    We present APQ for efficient deep learning inference on resource-constrained hardware. Unlike previous methods that separately search the neural architecture, pruning policy, and quantization policy, we optimize them in a joint manner. To deal with the larger design space it brings, a promising approach is to train a quantization-aware accuracy predictor to quickly get the accuracy of the quantized model and feed it to the search engine to select the best fit. However, training this quantization-aware accuracy predictor requires collecting a large number of quantized pairs, which involves quantization-aware finetuning and thus is highly time-consuming. To tackle this challenge, we propose to transfer the knowledge from a full-precision (i.e., fp32) accuracy predictor to the quantization-aware (i.e., int8) accuracy predictor, which greatly improves the sample efficiency. Besides, collecting the dataset for the fp32 accuracy predictor only requires to evaluate neural networks without any training cost by sampling from a pretrained once-for-all network, which is highly efficient. Extensive experiments on ImageNet demonstrate the benefits of our joint optimization approach. With the same accuracy, APQ reduces the latency/energy by 2x/1.3x over MobileNetV2+HAQ. Compared to the separate optimization approach (ProxylessNAS+AMC+HAQ), APQ achieves 2.3% higher ImageNet accuracy while reducing orders of magnitude GPU hours and CO2 emission, pushing the frontier for green AI that is environmental-friendly. The code and video are publicly available.Comment: Accepted by CVPR 202

    Approachable Error Bounded Lossy Compression

    Get PDF
    Compression is commonly used in HPC applications to move and store data. Traditional lossless compression, however, does not provide adequate compression of floating point data often found in scientific codes. Recently, researchers and scientists have turned to lossy compression techniques that approximate the original data rather than reproduce it in order to achieve desired levels of compression. Typical lossy compressors do not bound the errors introduced into the data, leading to the development of error bounded lossy compressors (EBLC). These tools provide the desired levels of compression as mathematical guarantees on the errors introduced. However, the current state of EBLC leaves much to be desired. The existing EBLC all have different interfaces requiring codes to be changed to adopt new techniques; EBLC have many more configuration options than their predecessors, making them more difficult to use; and EBLC typically bound quantities like point wise errors rather than higher level metrics such as spectra, p-values, or test statistics that scientists typically use. My dissertation aims to provide a uniform interface to compression and to develop tools to allow application scientists to understand and apply EBLC. This dissertation proposal presents three groups of work: LibPressio, a standard interface for compression and analysis; FRaZ/LibPressio-Opt frameworks for the automated configuration of compressors using LibPressio; and work on tools for analyzing errors in particular domains
    • …
    corecore