10,145 research outputs found

    The future of technology enhanced active learning ā€“ a roadmap

    Get PDF
    The notion of active learning refers to the active involvement of learner in the learning process, capturing ideas of learning-by-doing and the fact that active participation and knowledge construction leads to deeper and more sustained learning. Interactivity, in particular learnercontent interaction, is a central aspect of technology-enhanced active learning. In this roadmap, the pedagogical background is discussed, the essential dimensions of technology-enhanced active learning systems are outlined and the factors that are expected to influence these systems currently and in the future are identified. A central aim is to address this promising field from a best practices perspective, clarifying central issues and formulating an agenda for future developments in the form of a roadmap

    Authoring a Webā€enhanced interface for a new languageā€learning environment

    Get PDF
    This paper presents conceptual considerations underpinning a design process set up to develop an applicable and usable interface as well as defining parameters for a new and versatile Computer Assisted Language Learning (CALL) environment. Based on a multidisciplinary expertise combining Human Computer Interaction (HCI), Webā€based Java programming, CALL authoring and language teaching expertise, it strives to generate new CALLā€enhanced curriculum developments in language learning. The originality of the approach rests on its design rationale established on the strength of previously identified student requirements and authoring needs identifying inherent design weaknesses and interactive limitations of existing hypermedia CALL applications (HĆ©mard, 1998). At the student level, the emphasis is placed on three important design decisions related to the design of the interface, student interaction and usability. Thus, particular attention is given to design considerations focusing on the need to (a) develop a readily recognizable, professionally robust and intuitive interface, (b) provide a studentā€controlled navigational space based on a mixed learning environment approach, and (c) promote a flexible, networkā€based, access mode reconciling classroom with open access exploitations. At the author level, design considerations are essentially orientated towards adaptability and flexibility with the integration of authoring facilities, requiring no specific authoring skills, to cater for and support the need for a flexible approach adaptable to specific languageā€learning environments. This paper elaborates on these conceptual considerations within the design process with particular emphasis on the adopted principled methodology and resulting design decisions and solutions

    Assessing context-based learning: Not only rigorous but also relevant

    Get PDF
    Economic factors are driving significant change in higher education. There is increasing responsiveness to market demand for vocational courses and a growing appreciation of the importance of procedural (tacit) knowledge to service the needs of the Knowledge Economy; the skills in demand are information analysis, collaborative working and 'just-in-time learning'. New pedagogical methods go some way to accommodate these skills, situating learning in context and employing information and communications technology to present realistic simulations and facilitate collaborative exchange. However, what have so far proved resistant to change are the practices of assessment. This paper endorses the case for a scholarship of assessment and proposes the development of technology-supported tools and techniques to assess context-based learning. It also recommends a fundamental rethink of the norm-referenced and summative assessment of propositional knowledge as the principal criterion for student success in universities

    Collaborative Learning and Knowledge Transfer in Consciousness Society

    Get PDF
    Starting from the expression "workplace learningĆ¢ā‚¬ which states that the use of personal computers at work or at school reflects learning activities and work activities which are interchangeable at individual level, this paper presents collaborative models dedicated to processes of teaching, learning, assessment and research in education. One of the most important activities is represented by computer supported collaborative learning (CSCL) which, from its occurrence, presented a special interest for researchers in informatics. CSCL is based on human-computer interaction (HCI) and on computer supported cooperative work (CSCW). CSCL promotes in turn the development of computer supported collaborative research (CSCR). Information and communications technologies represent not only a media support but, most of all, a mean for accessing resources worldwide. The development of the information technology and of the information society brought benefits both to the traditional form of education, and to the distance education represented by the assisted instruction. The evolution of the information society led to the emergence of the society based on knowledge which represents an intermediary step between information society and consciousness society, who wants to be a moral society. This article highlights the transfer of data, information and knowledge (explicit and implicit) during assisted instruction processes along with the possibility to create collaborative content in consciousness society.CSCW, CSCL, CSCR Assisted Instruction, Consciousness Society

    Learning Objects, Learning Objectives and Learning Design.

    Get PDF
    Educational research and development into e-learning mainly focuses on the inclusion of new technological features without taking into account psycho-pedagogical concerns that are likely to improve a learner's cognitive process in this new educational category. This paper presents an instructional model that combines objectivist and constructivist learning theories. The model is based on the concept of a learning objective which is composed of a set of learning objects. A software tool, called the Instruction Aid System (IAS), has been developed to guide instructors through the development of learning objectives and the execution of the analysis and design phases of the proposed instructional model. Additionally, a blended approach to the learning process in Web-based distance education is also presented. This approach combines various event-based activities: self-paced learning, live e-learning and the use of face-to-face contact in classrooms

    A generic architecture for interactive intelligent tutoring systems

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University, 07/06/2001.This research is focused on developing a generic intelligent architecture for an interactive tutoring system. A review of the literature in the areas of instructional theories, cognitive and social views of learning, intelligent tutoring systems development methodologies, and knowledge representation methods was conducted. As a result, a generic ITS development architecture (GeNisa) has been proposed, which combines the features of knowledge base systems (KBS) with object-oriented methodology. The GeNisa architecture consists of the following components: a tutorial events communication module, which encapsulates the interactive processes and other independent computations between different components; a software design toolkit; and an autonomous knowledge acquisition from a probabilistic knowledge base. A graphical application development environment includes tools to support application development, and learning environments and which use a case scenario as a basis for instruction. The generic architecture is designed to support client-side execution in a Web browser environment, and further testing will show that it can disseminate applications over the World Wide Web. Such an architecture can be adapted to different teaching styles and domains, and reusing instructional materials automatically can reduce the effort of the courseware developer (hence cost and time) in authoring new materials. GeNisa was implemented using Java scripts, and subsequently evaluated at various commercial and academic organisations. Parameters chosen for the evaluation include quality of courseware, relevancy of case scenarios, portability to other platforms, ease of use, content, user-friendliness, screen display, clarity, topic interest, and overall satisfaction with GeNisa. In general, the evaluation focused on the novel characteristics and performances of the GeNisa architecture in comparison with other ITS and the results obtained are discussed and analysed. On the basis of the experience gained during the literature research and GeNisa development and evaluation. a generic methodology for ITS development is proposed as well as the requirements for the further development of ITS tools. Finally, conclusions are drawn and areas for further research are identified

    Modelling human teaching tactics and strategies for tutoring systems

    Get PDF
    One of the promises of ITSs and ILEs is that they will teach and assist learning in an intelligent manner. Historically this has tended to mean concentrating on the interface, on the representation of the domain and on the representation of the studentā€™s knowledge. So systems have attempted to provide students with reifications both of what is to be learned and of the learning process, as well as optimally sequencing and adjusting activities, problems and feedback to best help them learn that domain. We now have embodied (and disembodied) teaching agents and computer-based peers, and the field demonstrates a much greater interest in metacognition and in collaborative activities and tools to support that collaboration. Nevertheless the issue of the teaching competence of ITSs and ILEs is still important, as well as the more specific question as to whether systems can and should mimic human teachers. Indeed increasing interest in embodied agents has thrown the spotlight back on how such agents should behave with respect to learners. In the mid 1980s Ohlsson and others offered critiques of ITSs and ILEs in terms of the limited range and adaptability of their teaching actions as compared to the wealth of tactics and strategies employed by human expert teachers. So are we in any better position in modelling teaching than we were in the 80s? Are these criticisms still as valid today as they were then? This paper reviews progress in understanding certain aspects of human expert teaching and in developing tutoring systems that implement those human teaching strategies and tactics. It concentrates particularly on how systems have dealt with student answers and how they have dealt with motivational issues, referring particularly to work carried out at Sussex: for example, on responding effectively to the studentā€™s motivational state, on contingent and Vygotskian inspired teaching strategies and on the plausibility problem. This latter is concerned with whether tactics that are effectively applied by human teachers can be as effective when embodied in machine teachers
    • ā€¦
    corecore