218,451 research outputs found

    Context-aware Dynamic Discovery and Configuration of 'Things' in Smart Environments

    Full text link
    The Internet of Things (IoT) is a dynamic global information network consisting of Internet-connected objects, such as RFIDs, sensors, actuators, as well as other instruments and smart appliances that are becoming an integral component of the future Internet. Currently, such Internet-connected objects or `things' outnumber both people and computers connected to the Internet and their population is expected to grow to 50 billion in the next 5 to 10 years. To be able to develop IoT applications, such `things' must become dynamically integrated into emerging information networks supported by architecturally scalable and economically feasible Internet service delivery models, such as cloud computing. Achieving such integration through discovery and configuration of `things' is a challenging task. Towards this end, we propose a Context-Aware Dynamic Discovery of {Things} (CADDOT) model. We have developed a tool SmartLink, that is capable of discovering sensors deployed in a particular location despite their heterogeneity. SmartLink helps to establish the direct communication between sensor hardware and cloud-based IoT middleware platforms. We address the challenge of heterogeneity using a plug in architecture. Our prototype tool is developed on an Android platform. Further, we employ the Global Sensor Network (GSN) as the IoT middleware for the proof of concept validation. The significance of the proposed solution is validated using a test-bed that comprises 52 Arduino-based Libelium sensors.Comment: Big Data and Internet of Things: A Roadmap for Smart Environments, Studies in Computational Intelligence book series, Springer Berlin Heidelberg, 201

    Secure Identification in Social Wireless Networks

    Get PDF
    The applications based on social networking have brought revolution towards social life and are continuously gaining popularity among the Internet users. Due to the advanced computational resources offered by the innovative hardware and nominal subscriber charges of network operators, most of the online social networks are transforming into the mobile domain by offering exciting applications and games exclusively designed for users on the go. Moreover, the mobile devices are considered more personal as compared to their desktop rivals, so there is a tendency among the mobile users to store sensitive data like contacts, passwords, bank account details, updated calendar entries with key dates and personal notes on their devices. The Project Social Wireless Network Secure Identification (SWIN) is carried out at Swedish Institute of Computer Science (SICS) to explore the practicality of providing the secure mobile social networking portal with advanced security features to tackle potential security threats by extending the existing methods with more innovative security technologies. In addition to the extensive background study and the determination of marketable use-cases with their corresponding security requirements, this thesis proposes a secure identification design to satisfy the security dimensions for both online and offline peers. We have implemented an initial prototype using PHP Socket and OpenSSL library to simulate the secure identification procedure based on the proposed design. The design is in compliance with 3GPP‟s Generic Authentication Architecture (GAA) and our implementation has demonstrated the flexibility of the solution to be applied independently for the applications requiring secure identification. Finally, the thesis provides strong foundation for the advanced implementation on mobile platform in future

    A study into scalable transport networks for IoT deployment

    Get PDF
    The growth of the internet towards the Internet of Things (IoT) has impacted the way we live. Intelligent (smart) devices which can act autonomously has resulted in new applications for example industrial automation, smart healthcare systems, autonomous transportation to name just a few. These applications have dramatically improved the way we live as citizens. While the internet is continuing to grow at an unprecedented rate, this has also been coupled with the growing demands for new services e.g. machine-to machine (M2M) communications, smart metering etc. Transmission Control Protocol/Internet Protocol (TCP/IP) architecture was developed decades ago and was not prepared nor designed to meet these exponential demands. This has led to the complexity of the internet coupled with its inflexible and a rigid state. The challenges of reliability, scalability, interoperability, inflexibility and vendor lock-in amongst the many challenges still remain a concern over the existing (traditional) networks. In this study, an evolutionary approach into implementing a "Scalable IoT Data Transmission Network" (S-IoT-N) is proposed while leveraging on existing transport networks. Most Importantly, the proposed evolutionary approach attempts to address the above challenges by using open (existing) standards and by leveraging on the (traditional/existing) transport networks. The Proof-of-Concept (PoC) of the proposed S-IoT-N is attempted on a physical network testbed and is demonstrated along with basic network connectivity services over it. Finally, the results are validated by an experimental performance evaluation of the PoC physical network testbed along with the recommendations for improvement and future work

    Policy Based QoS support using BGP Routing

    Get PDF
    Abstract -Routing protocols are important to exchange routing information between neighboring routers. Such information is Key words: BGP, QoS, Autonomous System (AS) Introduction Current Internet architecture is based on the Best Effort (BE) model, where packets can be dropped indiscriminately in the event of congestion. Such architecture attempts to deliver all traffic as soon as possible within the limits of its abilities, but without any guarantee about throughput, delay, packet loss, etc. Though such a model works well for certain traditional applications such as FTP, E-mail and less QoS constrained applications, it can be intolerable for newly emerged real-time, multimedia applications such as Internet Telephony (VoIP), Video-Conferencing and Video on-Demand, as well as future services. Hence, with massive deployment of Internet based applications in recent years and the need to manage them efficiently, current Internet structure needs a major shift from the BE model to a service oriented model with support for desired QoS. Current research in this direction is focused towards providing better than BE service over the Internet through a new architecture. Also the new architecture should be both scalable and guarantee end-to-end QoS for different services/applications while supporting different levels of performance. Current Internet architecture lacks standardization while deployed across various domains, hence affecting end-to-end QoS significantly. In this paper our effort is to find a scalable and uniform solution mainly addressing routing and its effect on end to end QoS. In this regard, we consider current inter-domain routing based on BGP as the central component and develop an algorithm allowing QoS domains to be easily identified and enable policy based routing to support QoS for various applications. One of the main objectives in setting up an end-to-end path for any service over the Internet is providing support for its service requirements to achieve necessary QoS, and such tasks are difficult to achieve through current Internet architecture. In this regard, our algorithm is designed to address such heterogeneous service parameter requirements for different services between ASs, and tries to find a viable solution by integrating network policies with routing and traffic engineering objectives. We mainly focus on Inter-domain traffic engineering issues in resolving the policy requirements of different services. In doing so, we have identified and addressed two core problems in the Internet today in relation to QoS

    TRIM: An architecture for transparent IMS-based mobility

    Get PDF
    In recent years, the development and deployment of new wired and wireless access net work technologies have made the ubiquitous Internet a reality. Users can access anywhere and anytime to the broad set of value added Internet services, which are delivered by means of the IP protocol. In this context, 3GPP is currently developing the IP Multimedia Subsystem (IMS), as a key element that allows to evolve from the ubiquitous access to the Internet services towards a next generation network model, by providing a set of essen tial facilities such as session control, QoS, charging and service integration. Nevertheless, several open issues still need consideration before the future Internet becomes real, such as supporting user mobility in IP networks. Although mobility support in the Internet is receiving much attention, IMS networks present inherent particularities that require fur ther analysis. The solutions proposed so far for IMS do not support mobility transparently to the end user applications, or address the problem by introducing complex changes to the IMS infrastructure. This paper presents TRIM, an architecture for transparent IMS based mobility. TRIM supports mobility in IMS networks transparently to the end user applications, which are unaware of the handover management procedures executed between the mobile node and the network. We have performed several experiments with a TRIM prototype, using a real IMS testbed with 3G and WLAN access networks, validating the proposal for UDP and TCP based applications.European Community's Seventh Framework ProgramPartially granted by the Madrid Community through the MEDIANET project (S 2009/TIC 1468)Publicad

    The Road Ahead for Networking: A Survey on ICN-IP Coexistence Solutions

    Full text link
    In recent years, the current Internet has experienced an unexpected paradigm shift in the usage model, which has pushed researchers towards the design of the Information-Centric Networking (ICN) paradigm as a possible replacement of the existing architecture. Even though both Academia and Industry have investigated the feasibility and effectiveness of ICN, achieving the complete replacement of the Internet Protocol (IP) is a challenging task. Some research groups have already addressed the coexistence by designing their own architectures, but none of those is the final solution to move towards the future Internet considering the unaltered state of the networking. To design such architecture, the research community needs now a comprehensive overview of the existing solutions that have so far addressed the coexistence. The purpose of this paper is to reach this goal by providing the first comprehensive survey and classification of the coexistence architectures according to their features (i.e., deployment approach, deployment scenarios, addressed coexistence requirements and architecture or technology used) and evaluation parameters (i.e., challenges emerging during the deployment and the runtime behaviour of an architecture). We believe that this paper will finally fill the gap required for moving towards the design of the final coexistence architecture.Comment: 23 pages, 16 figures, 3 table
    • …
    corecore