91,699 research outputs found

    Responsible research and innovation in science education: insights from evaluating the impact of using digital media and arts-based methods on RRI values

    Get PDF
    The European Commission policy approach of Responsible Research and Innovation (RRI) is gaining momentum in European research planning and development as a strategy to align scientific and technological progress with socially desirable and acceptable ends. One of the RRI agendas is science education, aiming to foster future generations' acquisition of skills and values needed to engage in society responsibly. To this end, it is argued that RRI-based science education can benefit from more interdisciplinary methods such as those based on arts and digital technologies. However, the evidence existing on the impact of science education activities using digital media and arts-based methods on RRI values remains underexplored. This article comparatively reviews previous evidence on the evaluation of these activities, from primary to higher education, to examine whether and how RRI-related learning outcomes are evaluated and how these activities impact on students' learning. Forty academic publications were selected and its content analysed according to five RRI values: creative and critical thinking, engagement, inclusiveness, gender equality and integration of ethical issues. When evaluating the impact of digital and arts-based methods in science education activities, creative and critical thinking, engagement and partly inclusiveness are the RRI values mainly addressed. In contrast, gender equality and ethics integration are neglected. Digital-based methods seem to be more focused on students' questioning and inquiry skills, whereas those using arts often examine imagination, curiosity and autonomy. Differences in the evaluation focus between studies on digital media and those on arts partly explain differences in their impact on RRI values, but also result in non-documented outcomes and undermine their potential. Further developments in interdisciplinary approaches to science education following the RRI policy agenda should reinforce the design of the activities as well as procedural aspects of the evaluation research

    Promoting transfer and an integrated understanding for pre-service teachers of technology education

    Get PDF
    The ability of pre-service teachers (PSTs) to transfer learning between subjects and contexts when problem solving is critical for developing their capability as technologists and teachers of technology. However, a growing body of literature suggests this ability is often assumed or over-estimated, and rarely developed explicitly within courses or degree programmes. The nature of the problems tackled within technology are such that solutions draw upon knowledge from a wide range of contexts and subjects, however, the internal organization and structure of institutions and schools tends to compartmentalize rather integrate these. Providing a knowledge base and strategies to enhance PSTs’ awareness of and skills in transferring knowledge may allow for a more integrated understanding to develop. The importance of developing this ability to transfer knowledge is heightened as PSTs will, in turn, be responsible for developing the similar capabilities of their future students. This paper begins by considering problem solving in technology education and some of the issues associated with learning transfer. Thereafter, a framework and strategy for better integrating learning between courses is described and forms the basis for developments in an initial teacher education degree programme for technology education. Provisional data from evaluations and PSTs’ work indicated a positive effect in enhancing their thinking and additional data collected in the form of questionnaires, interviews and course work further illuminate this finding. It is argued that the development framework and approach enhances PSTs’ mental models of teaching technology and offers a significant step forward in promoting skills in the transfer of future learning between subjects; something increasingly critical for 21st century STEM Education

    Framework to Enhance Teaching and Learning in System Analysis and Unified Modelling Language

    Get PDF
    Cowling, MA ORCiD: 0000-0003-1444-1563; Munoz Carpio, JC ORCiD: 0000-0003-0251-5510Systems Analysis modelling is considered foundational for Information and Communication Technology (ICT) students, with introductory and advanced units included in nearly all ICT and computer science degrees. Yet despite this, novice systems analysts (learners) find modelling and systems thinking quite difficult to learn and master. This makes the process of teaching the fundamentals frustrating and time intensive. This paper will discuss the foundational problems that learners face when learning Systems Analysis modelling. Through a systematic literature review, a framework will be proposed based on the key problems that novice learners experience. In this proposed framework, a sequence of activities has been developed to facilitate understanding of the requirements, solutions and incremental modelling. An example is provided illustrating how the framework could be used to incorporate visualization and gaming elements into a Systems Analysis classroom; therefore, improving motivation and learning. Through this work, a greater understanding of the approach to teaching modelling within the computer science classroom will be provided, as well as a framework to guide future teaching activities

    Integrated quality and enhancement review : summative review : City of Bath College

    Get PDF

    A framework for design engineering education in a global context

    Get PDF
    This paper presents a framework for teaching design engineering in a global context using innovative technologies to enable distributed teams to work together effectively across international and cultural boundaries. The DIDET Framework represents the findings of a 5-year project conducted by the University of Strathclyde, Stanford University and Olin College which enhanced student learning opportunities by enabling them to partake in global, team based design engineering projects, directly experiencing different cultural contexts and accessing a variety of digital information sources via a range of innovative technology. The use of innovative technology enabled the formalization of design knowledge within international student teams as did the methods that were developed for students to store, share and reuse information. Coaching methods were used by teaching staff to support distributed teams and evaluation work on relevant classes was carried out regularly to allow ongoing improvement of learning and teaching and show improvements in student learning. Major findings of the 5 year project include the requirement to overcome technological, pedagogical and cultural issues for successful eLearning implementations. The DIDET Framework encapsulates all the conclusions relating to design engineering in a global context. Each of the principles for effective distributed design learning is shown along with relevant findings and suggested metrics. The findings detailed in the paper were reached through a series of interventions in design engineering education at the collaborating institutions. Evaluation was carried out on an ongoing basis and fed back into project development, both on the pedagogical and the technological approaches

    Good practice report:Nurturing graduate employability in higher education

    Get PDF

    Big data for monitoring educational systems

    Get PDF
    This report considers “how advances in big data are likely to transform the context and methodology of monitoring educational systems within a long-term perspective (10-30 years) and impact the evidence based policy development in the sector”, big data are “large amounts of different types of data produced with high velocity from a high number of various types of sources.” Five independent experts were commissioned by Ecorys, responding to themes of: students' privacy, educational equity and efficiency, student tracking, assessment and skills. The experts were asked to consider the “macro perspective on governance on educational systems at all levels from primary, secondary education and tertiary – the latter covering all aspects of tertiary from further, to higher, and to VET”, prioritising primary and secondary levels of education

    ALT-C 2010 - Conference Introduction and Abstracts

    Get PDF
    corecore