20 research outputs found

    4DT generator and guidance system

    Get PDF
    This thesis describes a 4D Trajectories Generator and Guidance system. 4D trajectory is a concept that will improve the capacity, efficiency and safety of airspace. First a 4D trajectories synthetizer design is proposed. A flight plan composed by a set of waypoints, aircraft dynamics model and a set of limits and constraints are assembled into an optimal control problem. Optimal solution is found by making use of an optimal control solver which uses pseudo spectral parametrization together with a generic nonlinear programming solver. A 4D Trajectories generator is implemented as a stand-alone application and combined with a graphic user interface to give rise to 4D Trajectories Research Software (4DT RS) capable to generate, compare and test optimal trajectories. A basic Tracking & Guidance system with proportional navigation concept is developed. The system is implemented as a complementary module for the 4D trajectories research software. Simulation tests have been carried out to demonstrate the functionalities and capabilities of the 4DT RS software and guidance system. Tests cases are based on fuel and time optimization on a high-traffic commercial route. A standard departure procedure is optimized in order to reduce the noise perceived by village鈥檚 population situated near airport. The tracking & guidance module is tested with a commercial flight simulator for demonstrating the performance of the optimal trajectories generated by the 4DT RS software

    Time-to-Contact-Based Control Laws for Flare Trajectory Generation and Landing Point Tracking in Autorotation

    Get PDF
    For many rotorcraft platforms, incorrect timing of the autorotation flare and deceleration maneuvers may result in significant aircraft damage and injury to the crew, or worse. There is a clear need for new pilot cueing and control augmentation technologies that lead to a higher probability of a successful autorotation landing. This paper describes a recent effort to develop two different Tau (time-to-contact)-based autorotation controllers from two different approaches that can be used to drive visual aids to help guide a pilot to apply the required control inputs to complete a safe autorotative landing

    Global path planning for competitive robotic cars

    Full text link

    Enhanced air traffic flow and capacity management under trajectory based operations considering traffic complexity

    Get PDF
    Tesi amb menci贸 internacional.(English) The Air Traffic Flow and Capacity Management (ATFCM) aims at maintaining the forecast traffic demand below the estimated capacity in airports and airspace sectors. The purpose is to maintain the workload of the air traffic controllers under safe limits and avoid overloaded situations. At present, the demand and the capacity management initiatives are deployed separately. Given a forecast traffic demand, the different air navigation service providers allocate their air traffic control resources providing the airspace sectorisations. Then, the network manager addresses the remaining overloads by allocating delay using the CASA algorithm based on a ration-by-schedule principle. It should be noted that some ad-hoc flights might be re-rerouted or limited in cruise altitude in order to avoid congested airspace by submitting a new flight plan. Hence, the previously chosen sectorisations may be not optimum once the demand management initiatives are deployed. Moreover, the flexibility of the airspace users is limited since they cannot express their preferences. Furthermore, the demand and the capacity are currently measured using entry counts as proxy of the air traffic control workload, which is rather easy to measure or estimate. Yet, this metric cannot evaluate the difficulty to handle different traffic patterns inside the sectors leading to the use of capacity buffers. This PhD focuses on overcoming the limitations of the current ATFCM system outlined before by the introduction of complexity metrics (instead of entry counts) in order to measure the traffic load, the better consideration of the airspace users preferences allowing the possibility of submitting alternative trajectories to avoid congested airspace, and the holistic integration of the demand and capacity management into the same optimisation problem. First, the integration of two capacity management initiatives, i.e. Dynamic Airspace Configuration (DAC) and Flight Centric ATC (FCA), is studied proving some benefits when such integration is dynamic. Next, a new concept of operation is proposed where the airspace users have the option of submitting alternative trajectories and the network manager is the responsible for the demand management (delay allocation and choice of the used trajectory) and the capacity management (selection of the airspace sectorisation), considering a network-wide optimisation. This concept of operations is mathematically modelled with two Demand and Capacity Balancing (DCB) models addressing only demand management and three holistic DCB models where the demand and the capacity management measures are considered together in the same optimisation problem. A first model aims at choosing the best trajectory and delay allocation per flight while analysing the traffic load with entry counts at traffic volume level. It is solved in a realistic case study using the historical regulations providing a 76.84% of reduction in the arrival delay if compared to the current system.(Catal脿) La gesti贸 dels fluxos de tr脿nsit i de la capacitat (ATFCM) t茅 com a objectiu mantenir la demanda de tr脿nsit prevista per sota de la capacitat estimada dels aeroports i els sectors de l鈥檈spai aeri. Actualment, les iniciatives de gesti贸 de la demanda i de gesti贸 de la capacitat es duen a terme separadament. Donada una previsi贸 de tr脿nsit, els diferents prove茂dors de serveis de navegaci贸 a猫ria assignen els seus recursos proporcionant les sectoritzacions de l鈥檈spai aeri. Despr茅s l鈥檃dministrador de la xarxa tracta les sobrec脿rregues restants mitjan莽ant l鈥檃ssignaci贸 de retards utilitzant l'algoritme CASA, basat en l'ordenaci贸 per ordre d鈥檃rribada. A alguns vols tamb茅 se鈥檒s pot canviar la ruta o se鈥檒s pot restringit l鈥檃ltitud del creuer per tal d鈥檈vitar zones congestionades requerint la presentaci贸 d鈥檜n nou pla de vol. Aix铆 doncs, les sectoritzacions pr猫viament escollides poden ser no 貌ptimes una vegada s鈥檌mplementin les iniciatives de gesti贸 de la demanda. A m茅s, la flexibilitat dels usuaris de l鈥檈spai aeri 茅s limitada ja que no poden expressar les seves prefer猫ncies. Altrament, la demanda i la capacitat es mesuren actualment comptant el nombre d鈥檃rribades com a proxy de la c脿rrega de treball del control del tr脿nsit aeri. No obstant aix貌, aquesta m猫trica no pot evaluar la dificultat de gestionar diferents patrons de tr脿nsit dins els sectors, la qual cosa condueix a la utilitzaci贸 de marges de capacitat. Aquest PhD es centra en superar les limitacions de l鈥檃ctual sistema d鈥橝TFCM indicades anteriorment mitjan莽ant la introducci贸 de m猫trics de complexitat (en lloc del n煤mero d鈥檃rribades) per a mesurar el tr脿nsit, la millor consideraci贸 de les prefer猫ncies dels usuaris de l鈥檈spai aeri permetent la possibilitat d鈥檜tilitzar trajectories alternatives per a evitar la congesti贸 de l鈥檈spai aeri, i la integraci贸 hol铆stica de la gesti贸 de la demanda i de la capacitat en el mateix problema d鈥檕ptimitzaci贸. Primer, s鈥檈studia la integraci贸 de dues iniciatives de gesti贸 de la capacitat: DAC i FCA. S鈥檕btenen beneficis quan la integraci贸 茅s din脿mica. Despr茅s, es proposa un nou concepte operacional on els usuaris de l鈥檈spai aeri tenen l'opci贸 de proposar trajectories alternatives i l鈥檃dministrador de la xarxa 茅s el responsable de la gesti贸 de la demanda (assignaci贸 de retards i elecci贸 de la traject貌ria utilitzada) i de la capacitat (selecci贸 de la sectoritzaci贸 de l鈥檈spai aeri) considerant l鈥檕ptimitzaci贸 de tota la xarxa. Aquest concepte operacional es formula amb dos models de DCB que aborden nom茅s la gesti贸 de la demanda i tres models hol铆stics on la gesti贸 de la demanda i de la capacitat es consideren conjuntament en el mateix problema d鈥檕ptimitzaci贸. Un primer model es centra en escollir la millor traject貌ria i assignaci贸 de retard per vol, mentre que el tr脿nsit s'avalua mitjan莽ant el n煤mero d鈥檃rribades als volums de tr脿nsit. Es resol un cas d鈥檈studi realista on s鈥檜tilitzen les regulacions hist貌riques aconseguint un 76.84% menys de retard a l'arribada si es compara amb els sistema actual. Un dels tres models hol铆stics de s鈥檈studia en detall, en concret el que utilitza m猫triques de complexitat i optimitza les sectoritzacions de l鈥檈spai aeri escollint entre un seguit de configuracions disponibles. Aquest model es tracta amb un nou m猫tode h铆brid presentat en aquest PhD i que combina la simulaci贸 del recuit i la programaci贸 din脿mica. En un primer cas d'estudi, aquest nou m猫tode es compara amb el m猫tode exacte resolt amb Gurobi proporcionant un millor rendiment principalment quan la dificultat del problema augmenta. En un segon cas d鈥檈studi es realitza un estudi de sensibilitat del par脿metre que modela una penalitzaci贸 per a diferents configuracions consecutives. Finalment, es resol un escenari a gran escala amb el m猫tode h铆brid proporcionant un 74.01% menys de retard a l'arribada i un 28.47% menys en el cost de la sectoritzaci贸 resultant en comparaci贸 amb un escenari de refer猫ncia que representa les millors condicions del sistema actual.(Espa帽ol) La gesti贸n de los flujos de tr谩fico y de la capacidad (ATFCM) pretende mantener la demanda de tr谩fico prevista por debajo de la capacidad estimada de los aeropuertos y los sectores del espacio a茅reo. Actualmente, las iniciativas de gesti贸n de la demanda y de la capacidad se implementan por separado. Ante una previsi贸n de tr谩fico, los diferentes proveedores de servicios de navegaci贸n a茅rea asignan sus recursos proporcionando las sectorizaciones del espacio a茅reo. Despu茅s, el administrador de la red trata las sobrecargas restantes mediante la asignaci贸n de retrasos utilizando el algoritmo CASA basado en un principio de ordenaci贸n por orden de llegada. A algunos vuelos tambi茅n se les puede cambiar de ruta o limitar la altitud de crucero para evitar la congesti贸n del espacio a茅reo requiriendo de un nuevo plan de vuelo. As铆 pues, las sectorizaciones elegidas anteriormente pueden no ser 贸ptimas una vez que se implementen las iniciativas de gesti贸n de la demanda. Adicionalmente, la flexibilidad de los usuarios del espacio a茅reo es limitada ya que no pueden expresar sus preferencias. Adem谩s, la demanda y la capacidad se miden actualmente contando el n煤mero de llegadas como proxy de la carga de trabajo del control del tr谩fico a茅reo. Sin embargo, esta m茅trica no puede evaluar la dificultad de controlar diferentes patrones de tr谩fico dentro de los sectores lo que conduce al uso de m谩rgenes de capacidad. Este PhD se centra en superar las limitaciones del sistema de ATFCM actual descritas anteriormente mediante la introducci贸n de m茅tricas de complejidad (en lugar del n煤mero de llegadas) para medir la carga de tr谩fico, la mejor consideraci贸n de las preferencias de los usuarios del espacio a茅reo permitiendo la posibilidad de la presentaci贸n de trayectorias alternativas para evitar la congesti贸n, y la integraci贸n hol铆stica de la gesti贸n de la demanda y de la capacidad en un mismo problema de optimizaci贸n. Primero, se estudia la integraci贸n de dos iniciativas de gesti贸n de la capacidad, DAC y FCA, demostrando beneficios cuando dicha integraci贸n es din谩mica. A continuaci贸n, se propone un nuevo concepto operacional donde los usuarios del espacio a茅reo tienen la opci贸n de presentar trayectorias alternativas y el administrador de la red es el responsable de la gesti贸n de la demanda (asignaci贸n de retrasos y elecci贸n de la trayectoria utilizada) y la gesti贸n de la capacidad (selecci贸n de la sectorizaci贸n), considerando una optimizaci贸n de toda la red. Este concepto operacional se modela con dos modelos de DCB que abordan s贸lo la gesti贸n de la demanda y tres modelos hol铆sticos donde las medidas de gesti贸n de la demanda y de la capacidad se consideran conjuntamente en el mismo problema de optimizaci贸n. Un primer modelo pretende elegir la mejor asignaci贸n de trayectoria y retraso por vuelo mientras se analiza la carga de tr谩fico con el n煤mero de llegadas a nivel de volumen de tr谩fico. Se resuelve un caso de estudio utilizando las regulaciones hist贸ricas proporcionando un 76.84% de reducci贸n en el retraso en la llegada si se compara con el sistema actual. El model hol铆stico que utiliza m茅tricas de complejidad y optimiza las sectorizaciones del espacio a茅reo escogiendo entre un conjunto de configuraciones disponibles se estudia en detalle. Este modelo se trata con un nuevo m茅todo h铆brido basado en el recocido simulado y la programaci贸n din谩mica. En un primer caso de estudio, se compara este nuevo m茅todo con el m茅todo exacto resuelto con Gurobi proporcionando un mejor rendimiento cuando aumenta la dificultad del problema. En un segundo caso de estudio se realiza un estudio de sensibilidad del par谩metro que modela una penalizaci贸n para diferentes configuraciones consecutivas. Finalmente, se resuelve un escenario a gran escala con el m茅todo H铆brido proporcionando menores valores de retraso en llegada y menores costes en la sectorizaci贸n resultante en comparaci贸n con un escenario de referencia que representa las mejores condiciones del sistema actual.Postprint (published version

    Workshop - Systems Design Meets Equation-based Languages

    Get PDF

    Air Force Institute of Technology Research Report 2007

    Get PDF
    This report summarizes the research activities of the Air Force Institute of Technology鈥檚 Graduate School of Engineering and Management. It describes research interests and faculty expertise; lists student theses/dissertations; identifies research sponsors and contributions; and outlines the procedures for contacting the school. Included in the report are: faculty publications, conference presentations, consultations, and funded research projects. Research was conducted in the areas of Aeronautical and Astronautical Engineering, Electrical Engineering and Electro-Optics, Computer Engineering and Computer Science, Systems and Engineering Management, Operational Sciences, Mathematics, Statistics and Engineering Physics

    Robotics 2010

    Get PDF
    Without a doubt, robotics has made an incredible progress over the last decades. The vision of developing, designing and creating technical systems that help humans to achieve hard and complex tasks, has intelligently led to an incredible variety of solutions. There are barely technical fields that could exhibit more interdisciplinary interconnections like robotics. This fact is generated by highly complex challenges imposed by robotic systems, especially the requirement on intelligent and autonomous operation. This book tries to give an insight into the evolutionary process that takes place in robotics. It provides articles covering a wide range of this exciting area. The progress of technical challenges and concepts may illuminate the relationship between developments that seem to be completely different at first sight. The robotics remains an exciting scientific and engineering field. The community looks optimistically ahead and also looks forward for the future challenges and new development

    Fuzzy PD control of an optically guided long reach robot

    Get PDF
    This thesis describes the investigation and development of a fuzzy controller for a manipulator with a single flexible link. The novelty of this research is due to the fact that the controller devised is suitable for flexible link manipulators with a round cross section. Previous research has concentrated on control of flexible slender structures that are relatively easier to model as the vibration effects of torsion can be ignored. Further novelty arises due to the fact that this is the first instance of the application of fuzzy control in the optical Tip Feedback Sensor (TFS) based configuration. A design methodology has been investigated to develop a fuzzy controller suitable for application in a safety critical environment such as the nuclear industry. This methodology provides justification for all the parameters of the fuzzy controller including membership fUllctions, inference and defuzzification techniques and the operators used in the algorithm. Using the novel modified phase plane method investigated in this thesis, it is shown that the derivation of complete, consistent and non-interactive rules can be achieved. This methodology was successfully applied to the derivation of fuzzy rules even when the arm was subjected to different payloads. The design approach, that targeted real-time embedded control applicat.ions from the outset, results in a controller implementation that is suitable for cheaper CPU constrained and memory challenged embedded processors. The controller comprises of a fuzzy supervisor that is used to alter the derivative term of a linear classical Proportional + Derivative (PD) controller. The derivative term is updated in relation to the measured tip error and its derivative obtained through the TFS based configuration. It is shown that by adding 'intelligence' to the control loop in this way, the performance envelope of the classical controller can be enhanced. A 128% increase in payload, 73.5% faster settling time and a reduction of steady state of over 50% is achieved using fuzzy control over its classical counterpart

    On scaling and system identification of flexible aircraft dynamics.

    Get PDF
    The use of subscale models has been common practice in the industry and has helped engineers gain more confidence in their design processes. However, each subscale model is developed for a specifc test, and consequently, different types of models are needed for observing aerodynamic, structural and aeroelastic characteristics of a full-scale aircraft. Yet, traditional aircraft design methods face serious challenges when a novel aircraft de- sign emerges and a proof-of-concept is needed for investigating this multi-disciplinary problem. An example of such a problem is the development of aircraft configurations with high aspect ratio wings for which the disciplines of aeroelastic and flight mechanics are strongly interconnected. Moreover, if the prediction of dynamic behaviour is of interest, a method that utilises system identification for analysing experimental data is of importance. Therefore, this thesis aims to develop a methodology to investigate the complex flight dynamic behaviour of flexible aircraft by combining techniques for developing subscale models and methods with the field of system identification. This aim is achieved through three objectives: 1) assessment of system identification methods for subscale flexible aircraft, 2) theoretical development of subscale modelling in terms of scaling laws and aeroelastic simulation framework and, 3) wind tunnel testing of the subscale model. Aspects of System Identification have been explored through use-cases where experimental data for a rigid aircraft both in full-scale and subscale configuration is used. The results highlight the fact that in testing a subscale model, dynamics are more prone to exhibit non-linear behaviour when compared to the full-scale model. It followed by the application of system identification for a flexible aircraft based on a simulation framework. This study emphasised the need for non-linear identification methods, such as an output error method, to characterise a flexible aircraft system. The work continues with the exploration of scaling laws applied to a simple aerofoil that is free to pitch and plunge. These results build the foundation for the development of a subscale high aspect ratio wing for wind tunnel experiments. The work highlights the trade-o s and compromises faced during the development of a dynamically subscaled model and the practice of system identification. The main contribution lies in the development of a low-cost methodology in building a subscale model that allows the use of dynamically scaled models at the early design stages. This practice provides the designer with a means to de-risk novel aircraft concepts as early as possible and in doing so, reduce overall development costs.PhD in Aerospac

    Self鈥搊rganised multi agent system for search and rescue operations

    Get PDF
    Autonomous multi-agent systems perform inadequately in time critical missions, while they tend to explore exhaustively each location of the field in one phase with out selecting the pertinent strategy. This research aims to solve this problem by introducing a hierarchy of exploration strategies. Agents explore an unknown search terrain with complex topology in multiple predefined stages by performing pertinent strategies depending on their previous observations. Exploration inside unknown, cluttered, and confined environments is one of the main challenges for search and rescue robots inside collapsed buildings. In this regard we introduce our novel exploration algorithm for multi鈥揳gent system, that is able to perform a fast, fair, and thorough search as well as solving the multi鈥揳gent traffic congestion. Our simulations have been performed on different test environments in which the complexity of the search field has been defined by fractal dimension of Brownian movements. The exploration stages are depicted as defined arenas of National Institute of Standard and Technology (NIST). NIST introduced three scenarios of progressive difficulty: yellow, orange, and red. The main concentration of this research is on the red arena with the least structure and most challenging parts to robot nimbleness
    corecore