39,961 research outputs found

    Abstractions of Stochastic Hybrid Systems

    Get PDF
    In this paper we define a stochastic bisimulation concept for a very general class of stochastic hybrid systems, which subsumes most classes of stochastic hybrid systems. The definition of this bisimulation builds on the concept of zigzag morphism defined for strong Markov processes. The main result is that this stochastic bisimulation is indeed an equivalence relation. The secondary result is that this bisimulation relation for the stochastic hybrid system models used in this paper implies the same kind of bisimulation for their continuous parts and respectively for their jumping structures

    Discrete Simulation of Behavioural Hybrid Process Calculus

    Get PDF
    Hybrid systems combine continuous-time and discrete behaviours. Simulation is one of the tools to obtain insight in dynamical systems behaviour. Simulation results provide information on performance of system and are helpful in detecting potential weaknesses and errors. Moreover, the results are handy in choosing adequate control strategies and parameters. In our contribution we report a work in progress, a technique for simulation of Behavioural Hybrid Process Calculus, an extension of process algebra that is suitable for the modelling and analysis of hybrid systems

    GHOST: Building blocks for high performance sparse linear algebra on heterogeneous systems

    Get PDF
    While many of the architectural details of future exascale-class high performance computer systems are still a matter of intense research, there appears to be a general consensus that they will be strongly heterogeneous, featuring "standard" as well as "accelerated" resources. Today, such resources are available as multicore processors, graphics processing units (GPUs), and other accelerators such as the Intel Xeon Phi. Any software infrastructure that claims usefulness for such environments must be able to meet their inherent challenges: massive multi-level parallelism, topology, asynchronicity, and abstraction. The "General, Hybrid, and Optimized Sparse Toolkit" (GHOST) is a collection of building blocks that targets algorithms dealing with sparse matrix representations on current and future large-scale systems. It implements the "MPI+X" paradigm, has a pure C interface, and provides hybrid-parallel numerical kernels, intelligent resource management, and truly heterogeneous parallelism for multicore CPUs, Nvidia GPUs, and the Intel Xeon Phi. We describe the details of its design with respect to the challenges posed by modern heterogeneous supercomputers and recent algorithmic developments. Implementation details which are indispensable for achieving high efficiency are pointed out and their necessity is justified by performance measurements or predictions based on performance models. The library code and several applications are available as open source. We also provide instructions on how to make use of GHOST in existing software packages, together with a case study which demonstrates the applicability and performance of GHOST as a component within a larger software stack.Comment: 32 pages, 11 figure

    Towards Efficient Path Query on Social Network with Hybrid RDF Management

    Full text link
    The scalability and exibility of Resource Description Framework(RDF) model make it ideally suited for representing online social networks(OSN). One basic operation in OSN is to find chains of relations,such as k-Hop friends. Property path query in SPARQL can express this type of operation, but its implementation suffers from performance problem considering the ever growing data size and complexity of OSN.In this paper, we present a main memory/disk based hybrid RDF data management framework for efficient property path query. In this hybrid framework, we realize an efficient in-memory algebra operator for property path query using graph traversal, and estimate the cost of this operator to cooperate with existing cost-based optimization. Experiments on benchmark and real dataset demonstrated that our approach can achieve a good tradeoff between data load expense and online query performance

    Towards a General Theory of Stochastic Hybrid Systems

    Get PDF
    In this paper we set up a mathematical structure, called Markov string, to obtaining a very general class of models for stochastic hybrid systems. Markov Strings are, in fact, a class of Markov processes, obtained by a mixing mechanism of stochastic processes, introduced by Meyer. We prove that Markov strings are strong Markov processes with the cadlag property. We then show how a very general class of stochastic hybrid processes can be embedded in the framework of Markov strings. This class, which is referred to as the General Stochastic Hybrid Systems (GSHS), includes as special cases all the classes of stochastic hybrid processes, proposed in the literature

    Practical Sparse Matrices in C++ with Hybrid Storage and Template-Based Expression Optimisation

    Get PDF
    Despite the importance of sparse matrices in numerous fields of science, software implementations remain difficult to use for non-expert users, generally requiring the understanding of underlying details of the chosen sparse matrix storage format. In addition, to achieve good performance, several formats may need to be used in one program, requiring explicit selection and conversion between the formats. This can be both tedious and error-prone, especially for non-expert users. Motivated by these issues, we present a user-friendly and open-source sparse matrix class for the C++ language, with a high-level application programming interface deliberately similar to the widely used MATLAB language. This facilitates prototyping directly in C++ and aids the conversion of research code into production environments. The class internally uses two main approaches to achieve efficient execution: (i) a hybrid storage framework, which automatically and seamlessly switches between three underlying storage formats (compressed sparse column, Red-Black tree, coordinate list) depending on which format is best suited and/or available for specific operations, and (ii) a template-based meta-programming framework to automatically detect and optimise execution of common expression patterns. Empirical evaluations on large sparse matrices with various densities of non-zero elements demonstrate the advantages of the hybrid storage framework and the expression optimisation mechanism.Comment: extended and revised version of an earlier conference paper arXiv:1805.0338
    • ā€¦
    corecore