13,464 research outputs found

    Individual eigenvalue distributions of chiral random two-matrix theory and the determination of F_pi

    Get PDF
    Dirac operator eigenvalues split into two when subjected to two different external vector sources. In a specific finite-volume scaling regime of gauge theories with fermions, this problem can be mapped to a chiral Random Two-Matrix Theory. We derive analytical expressions to leading order in the associated finite-volume expansion, showing how individual Dirac eigenvalue distributions and their correlations equivalently can be computed directly from the effective chiral Lagrangian in the epsilon-regime. Because of its equivalence to chiral Random Two-Matrix Theory, we use the latter for all explicit computations. On the mathematical side, we define and determine gap probabilities and individual eigenvalue distributions in that theory at finite N, and also derive the relevant scaling limit as N is taken to infinity. In particular, the gap probability for one Dirac eigenvalue is given in terms of a new kernel that depends on the external vector source. This expression may give a new and simple way of determining the pion decay constant F_pi from lattice gauge theory simulations

    The marginally stable Bethe lattice spin glass revisited

    Full text link
    Bethe lattice spins glasses are supposed to be marginally stable, i.e. their equilibrium probability distribution changes discontinuously when we add an external perturbation. So far the problem of a spin glass on a Bethe lattice has been studied only using an approximation where marginally stability is not present, which is wrong in the spin glass phase. Because of some technical difficulties, attempts at deriving a marginally stable solution have been confined to some perturbative regimes, high connectivity lattices or temperature close to the critical temperature. Using the cavity method, we propose a general non-perturbative approach to the Bethe lattice spin glass problem using approximations that should be hopeful consistent with marginal stability.Comment: 23 pages Revised version, hopefully clearer that the first one: six pages longe

    Option Pricing using Quantum Computers

    Full text link
    We present a methodology to price options and portfolios of options on a gate-based quantum computer using amplitude estimation, an algorithm which provides a quadratic speedup compared to classical Monte Carlo methods. The options that we cover include vanilla options, multi-asset options and path-dependent options such as barrier options. We put an emphasis on the implementation of the quantum circuits required to build the input states and operators needed by amplitude estimation to price the different option types. Additionally, we show simulation results to highlight how the circuits that we implement price the different option contracts. Finally, we examine the performance of option pricing circuits on quantum hardware using the IBM Q Tokyo quantum device. We employ a simple, yet effective, error mitigation scheme that allows us to significantly reduce the errors arising from noisy two-qubit gates.Comment: Fixed a typo. This article has been accepted in Quantu

    Solving Large-Scale Optimization Problems Related to Bell's Theorem

    Get PDF
    Impossibility of finding local realistic models for quantum correlations due to entanglement is an important fact in foundations of quantum physics, gaining now new applications in quantum information theory. We present an in-depth description of a method of testing the existence of such models, which involves two levels of optimization: a higher-level non-linear task and a lower-level linear programming (LP) task. The article compares the performances of the existing implementation of the method, where the LPs are solved with the simplex method, and our new implementation, where the LPs are solved with a matrix-free interior point method. We describe in detail how the latter can be applied to our problem, discuss the basic scenario and possible improvements and how they impact on overall performance. Significant performance advantage of the matrix-free interior point method over the simplex method is confirmed by extensive computational results. The new method is able to solve problems which are orders of magnitude larger. Consequently, the noise resistance of the non-classicality of correlations of several types of quantum states, which has never been computed before, can now be efficiently determined. An extensive set of data in the form of tables and graphics is presented and discussed. The article is intended for all audiences, no quantum-mechanical background is necessary.Comment: 19 pages, 7 tables, 1 figur

    Linear response for spiking neuronal networks with unbounded memory

    Get PDF
    We establish a general linear response relation for spiking neuronal networks, based on chains with unbounded memory. This relation allows us to predict the influence of a weak amplitude time-dependent external stimuli on spatio-temporal spike correlations, from the spontaneous statistics (without stimulus) in a general context where the memory in spike dynamics can extend arbitrarily far in the past. Using this approach, we show how linear response is explicitly related to neuronal dynamics with an example, the gIF model, introduced by M. Rudolph and A. Destexhe. This example illustrates the collective effect of the stimuli, intrinsic neuronal dynamics, and network connectivity on spike statistics. We illustrate our results with numerical simulations.Comment: 60 pages, 8 figure

    Learning Tuple Probabilities

    Get PDF
    Learning the parameters of complex probabilistic-relational models from labeled training data is a standard technique in machine learning, which has been intensively studied in the subfield of Statistical Relational Learning (SRL), but---so far---this is still an under-investigated topic in the context of Probabilistic Databases (PDBs). In this paper, we focus on learning the probability values of base tuples in a PDB from labeled lineage formulas. The resulting learning problem can be viewed as the inverse problem to confidence computations in PDBs: given a set of labeled query answers, learn the probability values of the base tuples, such that the marginal probabilities of the query answers again yield in the assigned probability labels. We analyze the learning problem from a theoretical perspective, cast it into an optimization problem, and provide an algorithm based on stochastic gradient descent. Finally, we conclude by an experimental evaluation on three real-world and one synthetic dataset, thus comparing our approach to various techniques from SRL, reasoning in information extraction, and optimization

    A Dynamical Systems Approach for Static Evaluation in Go

    Full text link
    In the paper arguments are given why the concept of static evaluation has the potential to be a useful extension to Monte Carlo tree search. A new concept of modeling static evaluation through a dynamical system is introduced and strengths and weaknesses are discussed. The general suitability of this approach is demonstrated.Comment: IEEE Transactions on Computational Intelligence and AI in Games, vol 3 (2011), no
    corecore