84,483 research outputs found

    Towards a software component ontology

    Get PDF
    Research has shown that component-based software engineering leads to software that exhibits higher quality, shorter time-tomarket and therefore, lower development cost. However, the development of component-based systems has been widely plagued with problems surrounding the integration of third-party components. Currently, software developers are forced to rely on ambiguous definitions of a component's services. There is no easy to understand protocol for defining how third-party componentsand component compositions are described and integrated into systems. Most vendors specify their components' services in a proprietary or context dependant fashion. This makes it difficult to clearly understand a component's services, their use and their operational pre and post conditions. Software Engineering ontologies define common sharable software engineering knowledge. They explicitly define software engineering concepts, their relationships and their interactions. In this paper, we propose a Software Component Ontology that specifically defines a formal, explicit specification of a shared conceptualization in the domain of software component engineering. We propose the use of our software component ontology as the basis for the development of future component compositions and component based applications

    Ontological theory for ontological engineering: Biomedical systems information integration

    Get PDF
    Software application ontologies have the potential to become the keystone in state-of-the-art information management techniques. It is expected that these ontologies will support the sort of reasoning power required to navigate large and complex terminologies correctly and efficiently. Yet, there is one problem in particular that continues to stand in our way. As these terminological structures increase in size and complexity, and the drive to integrate them inevitably swells, it is clear that the level of consistency required for such navigation will become correspondingly difficult to maintain. While descriptive semantic representations are certainly a necessary component to any adequate ontology-based system, so long as ontology engineers rely solely on semantic information, without a sound ontological theory informing their modeling decisions, this goal will surely remain out of reach. In this paper we describe how Language and Computing nv (L&C), along with The Institute for Formal Ontology and Medical Information Sciences (IFOMIS), are working towards developing and implementing just such a theory, combining the open software architecture of L&Cā€™s LinkSuiteTM with the philosophical rigor of IFOMISā€™s Basic Formal Ontology. In this way we aim to move beyond the more or less simple controlled vocabularies that have dominated the industry to date

    A conceptual architecture for semantic web services development and deployment

    Get PDF
    Several extensions of the Web Services Framework (WSF) have been proposed. The combination with Semantic Web technologies introduces a notion of semantics, which can enhance scalability through automation. Service composition to processes is an equally important issue. Ontology technology ā€“ the core of the Semantic Web ā€“ can be the central building block of an extension endeavour. We present a conceptual architecture for ontology-based Web service development and deployment. The development of service-based software systems within the WSF is gaining increasing importance. We show how ontologies can integrate models, languages, infrastructure, and activities within this architecture to support reuse and composition of semantic Web services

    A framework for developing engineering design ontologies within the aerospace industry

    Get PDF
    This paper presents a framework for developing engineering design ontologies within the aerospace industry. The aim of this approach is to strengthen the modularity and reuse of engineering design ontologies to support knowledge management initiatives within the aerospace industry. Successful development and effective utilisation of engineering ontologies strongly depends on the method/framework used to develop them. Ensuring modularity in ontology design is essential for engineering design activities due to the complexity of knowledge that is required to be brought together to support the product design decision-making process. The proposed approach adopts best practices from previous ontology development methods, but focuses on encouraging modular architectural ontology design. The framework is comprised of three phases namely: (1) Ontology design and development; (2) Ontology validation and (3) Implementation of ontology structure. A qualitative research methodology is employed which is composed of four phases. The first phase defines the capture of knowledge required for the framework development, followed by the ontology framework development, iterative refinement of engineering ontologies and ontology validation through case studies and expertsā€™ opinion. The ontology-based framework is applied in the combustor and casing aerospace engineering domain. The modular ontologies developed as a result of applying the framework and are used in a case study to restructure and improve the accessibility of information on a product design information-sharing platform. Additionally, domain experts within the aerospace industry validated the strengths, benefits and limitations of the framework. Due to the modular nature of the developed ontologies, they were also employed to support other project initiatives within the case study company such as role-based computing (RBC), IT modernisation activity and knowledge management implementation across the sponsoring organisation. The major benefit of this approach is in the reduction of man-hours required for maintaining engineering design ontologies. Furthermore, this approach strengthens reuse of ontology knowledge and encourages modularity in the design and development of engineering ontologies

    An ontology framework for developing platform-independent knowledge-based engineering systems in the aerospace industry

    Get PDF
    This paper presents the development of a novel knowledge-based engineering (KBE) framework for implementing platform-independent knowledge-enabled product design systems within the aerospace industry. The aim of the KBE framework is to strengthen the structure, reuse and portability of knowledge consumed within KBE systems in view of supporting the cost-effective and long-term preservation of knowledge within such systems. The proposed KBE framework uses an ontology-based approach for semantic knowledge management and adopts a model-driven architecture style from the software engineering discipline. Its phases are mainly (1) Capture knowledge required for KBE system; (2) Ontology model construct of KBE system; (3) Platform-independent model (PIM) technology selection and implementation and (4) Integration of PIM KBE knowledge with computer-aided design system. A rigorous methodology is employed which is comprised of five qualitative phases namely, requirement analysis for the KBE framework, identifying software and ontological engineering elements, integration of both elements, proof of concept prototype demonstrator and finally experts validation. A case study investigating four primitive three-dimensional geometry shapes is used to quantify the applicability of the KBE framework in the aerospace industry. Additionally, experts within the aerospace and software engineering sector validated the strengths/benefits and limitations of the KBE framework. The major benefits of the developed approach are in the reduction of man-hours required for developing KBE systems within the aerospace industry and the maintainability and abstraction of the knowledge required for developing KBE systems. This approach strengthens knowledge reuse and eliminates platform-specific approaches to developing KBE systems ensuring the preservation of KBE knowledge for the long term

    Ontology validation algorithm on data driven approach and vocabulary aspect

    Get PDF
    Ontology evaluation is required before using the ontology within applications. Similar with software practice, the purpose of ontology evaluation is to identify the achievement of requirement criteria. Users who require coverage criteria often seeking ontology that contain the terms related to their focused domain knowledge. Users encounter the difficulty to select a suitable ontology from variety of ontology evaluation approaches. Conceptualization of information related to ontology evaluation helps to identify the important component within ontology that helps towards coverage criteria achievement. This work proposes an algorithm to extract ontology documents gained from public ontology repositories like Falcons into its vocabulary parts focused on classes and literals. The algorithm then processes the extracted ontology components with similarity algorithm and later displays the result on the coverage match of ontology with provided terms and the terms that are synonym expanded using WordNet

    A Model-Driven Engineering Approach for ROS using Ontological Semantics

    Full text link
    This paper presents a novel ontology-driven software engineering approach for the development of industrial robotics control software. It introduces the ReApp architecture that synthesizes model-driven engineering with semantic technologies to facilitate the development and reuse of ROS-based components and applications. In ReApp, we show how different ontological classification systems for hardware, software, and capabilities help developers in discovering suitable software components for their tasks and in applying them correctly. The proposed model-driven tooling enables developers to work at higher abstraction levels and fosters automatic code generation. It is underpinned by ontologies to minimize discontinuities in the development workflow, with an integrated development environment presenting a seamless interface to the user. First results show the viability and synergy of the selected approach when searching for or developing software with reuse in mind.Comment: Presented at DSLRob 2015 (arXiv:1601.00877), Stefan Zander, Georg Heppner, Georg Neugschwandtner, Ramez Awad, Marc Essinger and Nadia Ahmed: A Model-Driven Engineering Approach for ROS using Ontological Semantic

    Rewiring strategies for changing environments

    Get PDF
    A typical pervasive application executes in a changing environment: people, computing resources, software services and network connections come and go continuously. A robust pervasive application needs adapt to this changing context as long as there is an appropriate rewiring strategy that guarantees correct behavior. We combine the MERODE modeling methodology with the ReWiRe framework for creating interactive pervasive applications that can cope with changing environments. The core of our approach is a consistent environment model, which is essential to create (re)configurable context-aware pervasive applications. We aggregate different ontologies that provide the required semantics to describe almost any target environment. We present a case study that shows a interactive pervasive application for media access that incorporates parental control on media content and can migrate between devices. The application builds upon models of the run-time environment represented as system states for dedicated rewiring strategies
    • ā€¦
    corecore