121,843 research outputs found

    A half century of progress towards a unified neural theory of mind and brain with applications to autonomous adaptive agents and mental disorders

    Full text link
    Invited article for the book Artificial Intelligence in the Age of Neural Networks and Brain Computing R. Kozma, C. Alippi, Y. Choe, and F. C. Morabito, Eds. Cambridge, MA: Academic PressThis article surveys some of the main design principles, mechanisms, circuits, and architectures that have been discovered during a half century of systematic research aimed at developing a unified theory that links mind and brain, and shows how psychological functions arise as emergent properties of brain mechanisms. The article describes a theoretical method that has enabled such a theory to be developed in stages by carrying out a kind of conceptual evolution. It also describes revolutionary computational paradigms like Complementary Computing and Laminar Computing that constrain the kind of unified theory that can describe the autonomous adaptive intelligence that emerges from advanced brains. Adaptive Resonance Theory, or ART, is one of the core models that has been discovered in this way. ART proposes how advanced brains learn to attend, recognize, and predict objects and events in a changing world that is filled with unexpected events. ART is not, however, a “theory of everything” if only because, due to Complementary Computing, different matching and learning laws tend to support perception and cognition on the one hand, and spatial representation and action on the other. The article mentions why a theory of this kind may be useful in the design of autonomous adaptive agents in engineering and technology. It also notes how the theory has led to new mechanistic insights about mental disorders such as autism, medial temporal amnesia, Alzheimer’s disease, and schizophrenia, along with mechanistically informed proposals about how their symptoms may be ameliorated

    How nouns and verbs differentially affect the behavior of artificial organisms

    Get PDF
    This paper presents an Artificial Life and Neural Network (ALNN) model for the evolution of syntax. The simulation methodology provides a unifying approach for the study of the evolution of language and its interaction with other behavioral and neural factors. The model uses an object manipulation task to simulate the evolution of language based on a simple verb-noun rule. The analyses of results focus on the interaction between language and other non-linguistic abilities, and on the neural control of linguistic abilities. The model shows that the beneficial effects of language on non-linguistic behavior are explained by the emergence of distinct internal representation patterns for the processing of verbs and nouns

    Towards Adaptable and Adaptive Policy-Free Middleware

    Get PDF
    We believe that to fully support adaptive distributed applications, middleware must itself be adaptable, adaptive and policy-free. In this paper we present a new language-independent adaptable and adaptive policy framework suitable for integration in a wide variety of middleware systems. This framework facilitates the construction of adaptive distributed applications. The framework addresses adaptability through its ability to represent a wide range of specific middleware policies. Adaptiveness is supported by a rich contextual model, through which an application programmer may control precisely how policies should be selected for any particular interaction with the middleware. A contextual pattern mechanism facilitates the succinct expression of both coarse- and fine-grain policy contexts. Policies may be specified and altered dynamically, and may themselves take account of dynamic conditions. The framework contains no hard-wired policies; instead, all policies can be configured.Comment: Submitted to Dependable and Adaptive Distributed Systems Track, ACM SAC 200

    Brain Learning, Attention, and Consciousness

    Full text link
    The processes whereby our brains continue to learn about a changing world in a stable fashion throughout life are proposed to lead to conscious experiences. These processes include the learning of top-down expectations, the matching of these expectations against bottom-up data, the focusing of attention upon the expected clusters of information, and the development of resonant states between bottom-up and top-down processes as they reach an attentive consensus between what is expected and what is there in the outside world. It is suggested that all conscious states in the brain are resonant states, and that these resonant states trigger learning of sensory and cognitive representations. The model which summarize these concepts are therefore called Adaptive Resonance Theory, or ART, models. Psychophysical and neurobiological data in support of ART are presented from early vision, visual object recognition, auditory streaming, variable-rate speech perception, somatosensory perception, and cognitive-emotional interactions, among others. It is noted that ART mechanisms seem to be operative at all levels of the visual system, and it is proposed how these mechanisms are realized by known laminar circuits of visual cortex. It is predicted that the same circuit realization of ART mechanisms will be found in the laminar circuits of all sensory and cognitive neocortex. Concepts and data are summarized concerning how some visual percepts may be visibly, or modally, perceived, whereas amoral percepts may be consciously recognized even though they are perceptually invisible. It is also suggested that sensory and cognitive processing in the What processing stream of the brain obey top-down matching and learning laws that arc often complementary to those used for spatial and motor processing in the brain's Where processing stream. This enables our sensory and cognitive representations to maintain their stability a.s we learn more about the world, while allowing spatial and motor representations to forget learned maps and gains that are no longer appropriate as our bodies develop and grow from infanthood to adulthood. Procedural memories are proposed to be unconscious because the inhibitory matching process that supports these spatial and motor processes cannot lead to resonance.Defense Advance Research Projects Agency; Office of Naval Research (N00014-95-1-0409, N00014-95-1-0657); National Science Foundation (IRI-97-20333

    Modelling and analyzing adaptive self-assembling strategies with Maude

    Get PDF
    Building adaptive systems with predictable emergent behavior is a challenging task and it is becoming a critical need. The research community has accepted the challenge by introducing approaches of various nature: from software architectures, to programming paradigms, to analysis techniques. We recently proposed a conceptual framework for adaptation centered around the role of control data. In this paper we show that it can be naturally realized in a reflective logical language like Maude by using the Reflective Russian Dolls model. Moreover, we exploit this model to specify, validate and analyse a prominent example of adaptive system: robot swarms equipped with self-assembly strategies. The analysis exploits the statistical model checker PVeStA
    corecore