135 research outputs found

    Studies in engine test bed automation

    Get PDF
    The work described In this then is was initiated in response to motivation from the needs of industry, the desire to investigate the performance of a process control computer in a relatively novel application as well as to provide training in methods of research. Ever-increasing labour costs have caused the automotive and petroleum industries to seek new means of maintaining the throughput of engine testing work. Their task has been made more difficult by the stringent test regulations that have been introduced with the very commendable intention of reducing atmospheric pollution. In consequence, any means by which the efficiency of testing could be improved and the throughput of work increased were deemed worthy of investigation. Engine testing involves a diversity of simple repetitive operations. These include the collection and processing of data and the execution of logical operations. The digital computer has proved itself to be ideally suited to performing such tasks, but the problem of integrating a computer with such an activity remains only partially solved. It is hoped that the work described in this thesis will go some way towards solving this problem. A description of the instrumentation and interfacing used on the test rig is included together with a description of the program structure and functions. These are not regarded as exemplary but it is hoped that they will aid the identification of the requirements for similar systems. A linearised mathematical model is developed to represent both the static and dynamic behaviour of the engine and dynamometer. This aspect of the study has provided useful insight into the problems associated with the control of engine test rigs. As a result it has been shown that effective control can be made available without recourse to highly sophisticated techniques. Optimisation systems as applied to the control of spark timing and mixture strength are considered. The limitations imposed on their operation by the inherent nature of combustion are outlined. Finally some computer controlled tests that were implemented are described as a means of illustrating the very extensive capabilities of such a system

    Maintenance Management of Wind Turbines

    Get PDF
    “Maintenance Management of Wind Turbines” considers the main concepts and the state-of-the-art, as well as advances and case studies on this topic. Maintenance is a critical variable in industry in order to reach competitiveness. It is the most important variable, together with operations, in the wind energy industry. Therefore, the correct management of corrective, predictive and preventive politics in any wind turbine is required. The content also considers original research works that focus on content that is complementary to other sub-disciplines, such as economics, finance, marketing, decision and risk analysis, engineering, etc., in the maintenance management of wind turbines. This book focuses on real case studies. These case studies concern topics such as failure detection and diagnosis, fault trees and subdisciplines (e.g., FMECA, FMEA, etc.) Most of them link these topics with financial, schedule, resources, downtimes, etc., in order to increase productivity, profitability, maintainability, reliability, safety, availability, and reduce costs and downtime, etc., in a wind turbine. Advances in mathematics, models, computational techniques, dynamic analysis, etc., are employed in analytics in maintenance management in this book. Finally, the book considers computational techniques, dynamic analysis, probabilistic methods, and mathematical optimization techniques that are expertly blended to support the analysis of multi-criteria decision-making problems with defined constraints and requirements

    Control of switched reluctance machines

    Get PDF
    This thesis is concerned with the control of switched reluctance machines for both motoring and generating applications. There are different control objectives in each case. For motoring operation, there are two possible control objectives. If the SRM is being employed in a servo-type application, the desire is for a constant output torque. However, for low performance applications where some amount of torque ripple is acceptable, the aim is to achieve efficient and accurate speed regulation. When the SRM is employed for generating purposes, the goal is to maintain the dc bus voltage at the required value while achieving maximum efficiency. Preliminary investigative work on switched reluctance machine control in both motoring and generating modes is performed. This includes the implementation and testing through simulation of two control strategies described in the literature. In addition, an experimental system is built for the development and testing of new control strategies. The inherent nonlinearity of the switched reluctance machine results in ripple in the torque profile. This adversely affects motoring performance for servo-type applications. Hence, three neuro-fuzzy control strategies for torque ripple minimisation in switched reluctance motors are developed. For all three control strategies, the training of a neurofuzzy compensator and the incorporation of the trained compensator into the overall switched reluctance drive are described. The performance of the control strategies in reducing the torque ripple is examined with simulations and through experimental testing. While the torque ripple is troublesome for servo-type applications, there are some applications where a certain amount of torque ripple is acceptable. Therefore, four simple motor control strategies for torque ripple-tolerant applications are described and tested experimentally. Three of the control strategies are for low speed motoring operation while the fourth is aimed at high speed motoring operation. Finally, three closed-loop generator control strategies aimed at high speed operation in single pulse mode are developed. The three control strategies are examined by testing on the experimental system. A comparison of the performance of the control strategies in terms of efficiency and peak current produced by each is presented

    NASA Tech Briefs, November 1988

    Get PDF
    Topics covered include: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences

    Automation of garment assembly processes

    Get PDF
    Robotic automation in apparel manufacturing is reviewed and investigated. Gripper design for separation and de-stacking of batch cut fabric components is identified as an important factor in implementing such automation and a study of existing gripper mechanisms is presented. New de-stacking gripper designs and processes are described together with experimental results. Single fabric component handling, alignment and registration techniques are investigated. Some of these techniques are integrated within a demonstrator robotic garment assembly cell automating the common edge binding process. Performance results are reported

    Modelling and practical set-up to investigate the performance of permanent magnet synchronous motor through rotor position estimation at zero and low speeds

    Get PDF
    This thesis provides a study for the rotor position estimation in SM-PMSMs, particularly at zero and low speeds. The method for zero rotor speed is based on injection of three high frequency voltage pulses in the motor stator windings. Then, the voltage responses at the motor terminals are exploited to extract the rotor position. Two approaches, modelling and practical implementations, are presented. The obtained results have showed a verification of a high-resolution position estimation (a position estimation of 1 degree angle), a simplicity and cost effective implementation and a no need for current sensors is required to achieve the estimation process. It should be noticed that the implementation of rotor position estimation at zero speed is only attended when the rotor is at standstill or very low speed. Therefore, the motor driver is not expected to be active at this condition. Thereby, the zero speed estimation does not provide a robust torque control. In future, this should be taking into consideration to overcome this drawback and to make the estimator more reliable. At low speed running, the primary goal is to start spinning the under test motors, and then the rotor position estimation is achieved. The motor spinning is based on adopting a virtual injected signal to generate the voltage components, Vα and Vβ, of the space vector pulse width modulation technique. Then, generating the eight space vectors is conducted through storing the standard patterns of the six space vector sectors in a memory structure together with the timing sequences of each sector. The presented strategy of motor running includes a proposed motor speed control scheme, which is based on controlling the frequency of the power signal, at the inverter output, through controlling the timing period of execution the power delivery program. The thesis presents a proposed method to achieve the estimation goal depends on tracking the magnetic saliency on one motor line voltage. Thereby, the rotor position estimation The introduced proposed method, for rotor position estimation at zero speed, verifies the following contributions: - Presents a simple and cost effective zero speed rotor position estimator for the motor under test. - The aimed resolution in this thesis is an angle 1 degree. IV - Adopting solely the measuring of motor terminal voltages. Eliminating the detection of the rotor magnet polarity as a necessary technique for completing the position estimation. At low speed running, the following contributions are verified: - Rather than a real frequency signal, a virtual injected signal is adopted to generate the voltage components, Vα and Vβ of the space vector pulse width modulation technique. - The proposed method for generating the eight space vectors is based on storing the standard patterns of the six sectors in a memory structure together with the timing sequence. - The strategy of motor speed control is based on controlling the period of execution the power delivery program. - The strategy of low speed rotor position employs one motor line voltage from which the low speed estimation is achieved

    Adaptive control system of slotless DC linear motor

    Get PDF
    Slotless DC linear motors (SDCLM) offer several benefits over traditional linear motors, including higher efficiency, smoother operation, and higher power density. These advantages make them a popular choice for a wide range of applications in various industries. One of the main benefits of a slotless DC linear motor is the absence of slot harmonics, which can cause vibration and noise in traditional slotted motors. This makes slotless motors ideal for applications that require precise and smooth motion, such as in medical equipment, robotics, and semiconductor manufacturing. However, one of the challenges of a Slotless DC linear motor is the presence of force ripple, which can limit the motor's performance, precision, and accuracy. Force ripple is caused by the mutual attraction of the translator's magnets and iron cores. It is independent of the motor current and is determined only by the relative position of the motor coils regarding the magnets. To overcome these challenges, motor redesign, magnetic field optimisation and the use of an adaptive control system. This research program focused on and investigated the above possible methods (i.e., motor redesign, magnetic field optimisation field and use of advanced control algorithms such as Sliding Mode Control SMC) to tackle the current challenges and improve the relevant industrial application performance and precision. The inquiry encompasses the analysis, design, and control of the SDCLM by proper modelling, building, and experimental validation of the modelled findings, applying both static and dynamic methodologies. Electrical, mechanical, and magnetic analyses were performed on the SDCLM design. The performance of the SDCLM was investigated using a finite element method (FEM), and the motor parameters were improved. Investigation and analysis are performed about additional difficulties such as force ripple and normal force, where the results indicated that the flux density in the airgap and the thrust force were different between the actual time and the simulation by 7.14% and 8.07%, respectively. Moreover, sliding mode control is designed to achieve desired system performance, such as reducing the power ripple of a slotless DC linear motor. where the proposed control shows experiments that it has stability despite disturbances and uncertainties. To improve the control method and reduce the steady-state error caused by the force ripple, the Bees algorithm has been used to tune the parameters of the controller. Finally, the outcomes indicate that the control method employing the disturbance observer and Bees algorithm has enhanced the performance of both position and speed, while concurrently reducing the force ripple. A comparison between simulation and experiment shows that there is a difference in the tracking performance, where the difference was around 13.6%. This error could have arisen from the omission of certain errors that cannot be accounted for within the simulation. These errors may stem from issues with the position sensor or discrepancies in the manual system design process

    The effect of rotor and casing geometry on the performance of cross-flow fans.

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre- DSC:D38032/81 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Haptics: Science, Technology, Applications

    Get PDF
    This open access book constitutes the proceedings of the 12th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2020, held in Leiden, The Netherlands, in September 2020. The 60 papers presented in this volume were carefully reviewed and selected from 111 submissions. The were organized in topical sections on haptic science, haptic technology, and haptic applications. This year's focus is on accessibility
    corecore