53,630 research outputs found

    Context Aware Service Oriented Computing in Mobile Ad Hoc Networks

    Get PDF
    These days we witness a major shift towards small, mobile devices, capable of wireless communication. Their communication capabilities enable them to form mobile ad hoc networks and share resources and capabilities. Service Oriented Computing (SOC) is a new emerging paradigm for distributed computing that has evolved from object-oriented and component-oriented computing to enable applications distributed within and across organizational boundaries. Services are autonomous computational elements that can be described, published, discovered, and orchestrated for the purpose of developing applications. The application of the SOC model to mobile devices provides a loosely coupled model for distributed processing in a resource-poor and highly dynamic environment. Cooperation in a mobile ad hoc environment depends on the fundamental capability of hosts to communicate with each other. Peer-to-peer interactions among hosts within communication range allow such interactions but limit the scope of interactions to a local region. Routing algorithms for mobile ad hoc networks extend the scope of interactions to cover all hosts transitively connected over multi-hop routes. Additional contextual information, e.g., knowledge about the movement of hosts in physical space, can help extend the boundaries of interactions beyond the limits of an island of connectivity. To help separate concerns specific to different layers, a coordination model between the routing layer and the SOC layer provides abstractions that mask the details characteristic to the network layer from the distributed computing semantics above. This thesis explores some of the opportunities and challenges raised by applying the SOC paradigm to mobile computing in ad hoc networks. It investigates the implications of disconnections on service advertising and discovery mechanisms. It addresses issues related to code migration in addition to physical host movement. It also investigates some of the security concerns in ad hoc networking service provision. It presents a novel routing algorithm for mobile ad hoc networks and a novel coordination model that addresses space and time explicitly

    Challenges of Misbehavior Detection in Industrial Wireless Networks

    Get PDF
    In recent years, wireless technologies are increasingly adopted in many application domains that were either unconnected before or exclusively used cable networks. This paradigm shift towards - often ad-hoc - wireless communication has led to significant benefits in terms of flexibility and mobility. Alongside with these benefits, however, arise new attack vectors, which cannot be mitigated by traditional security measures. Hence, mechanisms that are orthogonal to cryptographic security techniques are necessary in order to detect adversaries. In traditional networks, such mechanisms are subsumed under the term "intrusion detection system" and many proposals have been implemented for different application domains. More recently, the term "misbehavior detection" has been coined to encompass detection mechanisms especially for attacks in wireless networks. In this paper, we use industrial wireless networks as an exemplary application domain to discuss new directions and future challenges in detecting insider attacks. To that end, we review existing work on intrusion detection in mobile ad-hoc networks. We focus on physical-layer-based detection mechanisms as these are a particularly interesting research direction that had not been reasonable before widespread use of wireless technology.Peer Reviewe

    Moving Targets: Geographically Routed Human Movement Networks

    Get PDF
    We introduce a new communication paradigm, Human-to-human Mobile Ad hoc Networking (HuManet), that exploits smartphone capabilities and human behavior to create decentralized networks for smartphone-to-smartphone message delivery. HuManets support stealth command-and-control messaging for mobile BotNets, covert channels in the presence of an observer who monitors all cellular communication, and distributed protocols for querying the state or content of targeted mobile devices. In this paper, we introduce techniques for constructing HumaNets and describe protocols for efficiently routing and addressing messages. In contrast to flooding or broadcast schemes that saturate the network and aggressively consume phone resources (e.g., batteries), our protocols exploit human mobility patterns to significantly increase communication efficiency while limiting the exposure of HuManets to mobile service providers. Our techniques leverage properties of smartphones – in particular, their highly synchronized clocks and ability to discern location information – to construct location profiles for each device. HuManets’ fully-distributed and heuristic-based routing protocols route messages towards phones with location profiles that are similar to those of the intended receiver, enabling efficient message delivery with limited effects to end-to-end latency

    IF-MANET: Interoperable framework for heterogeneous mobile ad hoc networks

    Get PDF
    The advances in low power micro-processors, wireless networks and embedded systems have raised the need to utilize the significant resources of mobile devices. These devices for example, smart phones, tablets, laptops, wearables, and sensors are gaining enormous processing power, storage capacity and wireless bandwidth. In addition, the advancement in wireless mobile technology has created a new communication paradigm via which a wireless network can be created without any priori infrastructure called mobile ad hoc network (MANET). While progress is being made towards improving the efficiencies of mobile devices and reliability of wireless mobile networks, the mobile technology is continuously facing the challenges of un-predictable disconnections, dynamic mobility and the heterogeneity of routing protocols. Hence, the traditional wired, wireless routing protocols are not suitable for MANET due to its unique dynamic ad hoc nature. Due to the reason, the research community has developed and is busy developing protocols for routing in MANET to cope with the challenges of MANET. However, there are no single generic ad hoc routing protocols available so far, which can address all the basic challenges of MANET as mentioned before. Thus this diverse range of ever growing routing protocols has created barriers for mobile nodes of different MANET taxonomies to intercommunicate and hence wasting a huge amount of valuable resources. To provide interaction between heterogeneous MANETs, the routing protocols require conversion of packets, meta-model and their behavioural capabilities. Here, the fundamental challenge is to understand the packet level message format, meta-model and behaviour of different routing protocols, which are significantly different for different MANET Taxonomies. To overcome the above mentioned issues, this thesis proposes an Interoperable Framework for heterogeneous MANETs called IF-MANET. The framework hides the complexities of heterogeneous routing protocols and provides a homogeneous layer for seamless communication between these routing protocols. The framework creates a unique Ontology for MANET routing protocols and a Message Translator to semantically compare the packets and generates the missing fields using the rules defined in the Ontology. Hence, the translation between an existing as well as newly arriving routing protocols will be achieved dynamically and on-the-fly. To discover a route for the delivery of packets across heterogeneous MANET taxonomies, the IF-MANET creates a special Gateway node to provide cluster based inter-domain routing. The IF-MANET framework can be used to develop different middleware applications. For example: Mobile grid computing that could potentially utilise huge amounts of aggregated data collected from heterogeneous mobile devices. Disaster & crises management applications can be created to provide on-the-fly infrastructure-less emergency communication across organisations by utilising different MANET taxonomies

    Virtual Communication Stack: Towards Building Integrated Simulator of Mobile Ad Hoc Network-based Infrastructure for Disaster Response Scenarios

    Full text link
    Responses to disastrous events are a challenging problem, because of possible damages on communication infrastructures. For instance, after a natural disaster, infrastructures might be entirely destroyed. Different network paradigms were proposed in the literature in order to deploy adhoc network, and allow dealing with the lack of communications. However, all these solutions focus only on the performance of the network itself, without taking into account the specificities and heterogeneity of the components which use it. This comes from the difficulty to integrate models with different levels of abstraction. Consequently, verification and validation of adhoc protocols cannot guarantee that the different systems will work as expected in operational conditions. However, the DEVS theory provides some mechanisms to allow integration of models with different natures. This paper proposes an integrated simulation architecture based on DEVS which improves the accuracy of ad hoc infrastructure simulators in the case of disaster response scenarios.Comment: Preprint. Unpublishe

    Mobile Computing in Digital Ecosystems: Design Issues and Challenges

    Full text link
    In this paper we argue that the set of wireless, mobile devices (e.g., portable telephones, tablet PCs, GPS navigators, media players) commonly used by human users enables the construction of what we term a digital ecosystem, i.e., an ecosystem constructed out of so-called digital organisms (see below), that can foster the development of novel distributed services. In this context, a human user equipped with his/her own mobile devices, can be though of as a digital organism (DO), a subsystem characterized by a set of peculiar features and resources it can offer to the rest of the ecosystem for use from its peer DOs. The internal organization of the DO must address issues of management of its own resources, including power consumption. Inside the DO and among DOs, peer-to-peer interaction mechanisms can be conveniently deployed to favor resource sharing and data dissemination. Throughout this paper, we show that most of the solutions and technologies needed to construct a digital ecosystem are already available. What is still missing is a framework (i.e., mechanisms, protocols, services) that can support effectively the integration and cooperation of these technologies. In addition, in the following we show that that framework can be implemented as a middleware subsystem that enables novel and ubiquitous forms of computation and communication. Finally, in order to illustrate the effectiveness of our approach, we introduce some experimental results we have obtained from preliminary implementations of (parts of) that subsystem.Comment: Proceedings of the 7th International wireless Communications and Mobile Computing conference (IWCMC-2011), Emergency Management: Communication and Computing Platforms Worksho
    • …
    corecore