366,681 research outputs found

    Effect of inverse magnetic catalysis on conserved charge fluctuations in hadron resonance gas model

    Full text link
    The effect of inverse magnetic catalysis (IMC) has been observed on the conserved charge fluctuations and the correlations along the chemical freeze-out curve in a hadron resonance gas model. The fluctuations and the correlations have been compared with and without charge conservations. The charge conservation plays an important role in the calculation of the fluctuations at nonzero magnetic field and for the fluctuations in the strange charge at zero magnetic field. The charge conservation diminishes the correlations χBS\chi_{BS} and χQB\chi_{QB}, but enhances the correlation χQS\chi_{QS}. The baryonic fluctuations (2nd order) at B=0.25B = 0.25 GeV2{GeV}^2 increases more than two times compared to B=0B = 0 at higher μB\mu_{B}. The fluctuations have been compared at nonzero magnetic field along the freeze-out curve i.e along fitted parameters of the chemical freeze-out temperature and chemical potentials, with the fluctuations at nonzero magnetic field along the freeze-out curve with the IMC effect, and the results are very different with the IMC effect. This is clearly seen in the products of different moments σ2/M{{\sigma}^2}/{M} and SσS\sigma of net-kaon distribution.Comment: 12 pages,10 figures, Accepted by Phys. Rev.

    An Adaptive Locally Connected Neuron Model: Focusing Neuron

    Full text link
    This paper presents a new artificial neuron model capable of learning its receptive field in the topological domain of inputs. The model provides adaptive and differentiable local connectivity (plasticity) applicable to any domain. It requires no other tool than the backpropagation algorithm to learn its parameters which control the receptive field locations and apertures. This research explores whether this ability makes the neuron focus on informative inputs and yields any advantage over fully connected neurons. The experiments include tests of focusing neuron networks of one or two hidden layers on synthetic and well-known image recognition data sets. The results demonstrated that the focusing neurons can move their receptive fields towards more informative inputs. In the simple two-hidden layer networks, the focusing layers outperformed the dense layers in the classification of the 2D spatial data sets. Moreover, the focusing networks performed better than the dense networks even when 70%\% of the weights were pruned. The tests on convolutional networks revealed that using focusing layers instead of dense layers for the classification of convolutional features may work better in some data sets.Comment: 45 pages, a national patent filed, submitted to Turkish Patent Office, No: -2017/17601, Date: 09.11.201

    The SBF Survey of Galaxy Distances. II. Local and Large-Scale Flows

    Full text link
    We present analysis of local large scale flows using the Surface Brightness Fluctuation (SBF) Survey for the distances to 300 early-type galaxies. Our models of the distribution function of mean velocity and velocity dispersion at each point in space include a uniform thermal velocity dispersion and spherical attractors whose position, amplitude, and radial shape are free to vary. Our fitting procedure performs a maximum likelihood fit of the model to the observations. We obtain a Hubble constant of Ho = 77 +/- 4 +/- 7 km/s/Mpc, but a uniform Hubble flow is not acceptable fit to the data. Inclusion of two attractors, one of whose fit location coincides with the Virgo cluster and the other whose fit location is slightly beyond the Centaurus clusters nearly explain the peculiar velocities, but the quality of the fit can be further improved by the addition of a quadrupole correction to the Hubble flow. Although the dipole and quadrupole may be genuine manifestations of more distant density fluctuations, we find evidence that they are more likely due to non-spherical attractors. We find no evidence for bulk flows which include our entire survey volume (R < 3000 km/s); our volume is at rest with respect to the CMB. The fits to the attractors both have isothermal radial profiles (v ~ 1/r) over a range of overdensity between about 10 and 1, but fall off more steeply at larger radius. The best fit value for the small scale, cosmic thermal velocity is 180 +/- 14 km/s.Comment: 37 pages, AASTeX Latex, including 30 Postscript figures, submitted to Astrophysical Journal, July 2, 199

    A Comparative Study of Magnetic Fields in the Solar Photosphere and Chromosphere at Equatorial and Polar Latitudes

    Full text link
    Besides their own intrinsic interest, correct interpretation of solar surface magnetic field observations is crucial to our ability to describe the global magnetic structure of the solar atmosphere. Photospheric magnetograms are often used as lower boundary conditions in models of the corona, but not data from the nearly force-free chromosphere. National Solar Observatory's (NSO) Synoptic Optical Long-term Investigations of the Sun VSM (Vector Spectromagnetograph) produces full-disk line-of-sight magnetic flux images deriving from both photospheric and chromospheric layers on a daily basis. In this paper, we investigate key properties of the magnetic field in these two layers using more than five years of VSM data. We find from near-equatorial measurements that the east-west inclination angle of most photospheric fields is less than about 12{\deg}, while chromospheric fields expand in all directions to a significant degree. Using a simple stereoscopic inversion, we find evidence that photospheric polar fields are also nearly radial but that during 2008 the chromospheric field in the south pole was expanding superradially. We obtain a spatially resolved polar photospheric flux distribution up to 80{\deg} latitude whose strength increases poleward approximately as cosine(colatitude) to the power 9-10. This distribution would give a polar field strength of 5-6 G. We briefly discuss implications for future synoptic map construction and modeling

    The influence of push-off timing in a robotic ankle-foot prosthesis on the energetics and mechanics of walking

    Get PDF
    Background: Robotic ankle-foot prostheses that provide net positive push-off work can reduce the metabolic rate of walking for individuals with amputation, but benefits might be sensitive to push-off timing. Simple walking models suggest that preemptive push-off reduces center-of-mass work, possibly reducing metabolic rate. Studies with bilateral exoskeletons have found that push-off beginning before leading leg contact minimizes metabolic rate, but timing was not varied independently from push-off work, and the effects of push-off timing on biomechanics were not measured. Most lower-limb amputations are unilateral, which could also affect optimal timing. The goal of this study was to vary the timing of positive prosthesis push-off work in isolation and measure the effects on energetics, mechanics and muscle activity. Methods: We tested 10 able-bodied participants walking on a treadmill at 1.25 m.s(-1). Participants wore a tethered ankle-foot prosthesis emulator on one leg using a rigid boot adapter. We programmed the prosthesis to apply torque bursts that began between 46% and 56% of stride in different conditions. We iteratively adjusted torque magnitude to maintain constant net positive push-off work. Results: When push-off began at or after leading leg contact, metabolic rate was about 10% lower than in a condition with Spring-like prosthesis behavior. When push-off began before leading leg contact, metabolic rate was not different from the Spring-like condition. Early push-off led to increased prosthesis-side vastus medialis and biceps femoris activity during push-off and increased variability in step length and prosthesis loading during push-off. Prosthesis push-off timing had no influence on intact-side leg center-of-mass collision work. Conclusions: Prosthesis push-off timing, isolated from push-off work, strongly affected metabolic rate, with optimal timing at or after intact-side heel contact. Increased thigh muscle activation and increased human variability appear to have caused the lack of reduction in metabolic rate when push-off was provided too early. Optimal timing with respect to opposite heel contact was not different from normal walking, but the trends in metabolic rate and center-of-mass mechanics were not consistent with simple model predictions. Optimal push-off timing should also be characterized for individuals with amputation, since meaningful benefits might be realized with improved timing

    The Fine-Structure of the Net-Circular Polarization in a Sunspot Penumbra

    Full text link
    We present novel evidence for a fine structure observed in the net-circular polarization (NCP) of a sunspot penumbra based on spectropolarimetric measurements utilizing the Zeeman sensitive FeI 630.2 nm line. For the first time we detect a filamentary organized fine structure of the NCP on spatial scales that are similar to the inhomogeneities found in the penumbral flow field. We also observe an additional property of the visible NCP, a zero-crossing of the NCP in the outer parts of the center-side penumbra, which has not been recognized before. In order to interprete the observations we solve the radiative transfer equations for polarized light in a model penumbra with embedded magnetic flux tubes. We demonstrate that the observed zero-crossing of the NCP can be explained by an increased magnetic field strength inside magnetic flux tubes in the outer penumbra combined with a decreased magnetic field strength in the background field. Our results strongly support the concept of the uncombed penumbra

    Emergence of Bloch oscillations in one-dimensional systems

    Full text link
    Electrons in periodic potentials exhibit oscillatory motion in presence of an electric field. Such oscillations are known as Bloch oscillations. In this article we theoretically investigate the emergence of Bloch oscillations for systems where the electric field is confined to a finite region, like in typical electronic devices. We use a one-dimensional tight-binding model within the single-band approximation to numerically study the dynamics of electrons after a sudden switching-on of the electric field. We find a transition from a regime with direct current to Bloch oscillations when increasing the system size or decreasing the field strength. We propose a pump-probe scheme to observe the oscillations by measuring the accumulated charge as a function of the pulse-length
    corecore