81,867 research outputs found

    Towards a minimal order distributed observer for linear systems

    Get PDF
    In this paper we consider the distributed estimation problem for continuous-time linear time-invariant (LTI) systems. A single linear plant is observed by a network of local observers. Each local observer in the network has access to only part of the output of the observed system, but can also receive information on the state estimates of its neigbours. Each local observer should in this way generate an estimate of the plant state. In this paper we study the problem of existence of a reduced order distributed observer. We show that if the observed system is observable and the network graph is a strongly connected directed graph, then a distributed observer exists with state space dimension equal to Nni=1NpiNn - \sum_{i =1}^N p_i, where NN is the number of network nodes, nn is the state space dimension of the observed plant, and pip_i is the rank of the output matrix of the observed output received by the iith local observer. In the case of a single observer, this result specializes to the well-known minimal order observer in classical observer design.Comment: 12 pages, 1 figur

    Stabilization of Networked Control Systems with Sparse Observer-Controller Networks

    Full text link
    In this paper we provide a set of stability conditions for linear time-invariant networked control systems with arbitrary topology, using a Lyapunov direct approach. We then use these stability conditions to provide a novel low-complexity algorithm for the design of a sparse observer-based control network. We employ distributed observers by employing the output of other nodes to improve the stability of each observer dynamics. To avoid unbounded growth of controller and observer gains, we impose bounds on their norms. The effects of relaxation of these bounds is discussed when trying to find the complete decentralization conditions

    Optimal Population Coding, Revisited

    Get PDF
    Cortical circuits perform the computations underlying rapid perceptual decisions within a few dozen milliseconds with each neuron emitting only a few spikes. Under these conditions, the theoretical analysis of neural population codes is challenging, as the most commonly used theoretical tool – Fisher information – can lead to erroneous conclusions about the optimality of different coding schemes. Here we revisit the effect of tuning function width and correlation structure on neural population codes based on ideal observer analysis in both a discrimination and reconstruction task. We show that the optimal tuning function width and the optimal correlation structure in both paradigms strongly depend on the available decoding time in a very similar way. In contrast, population codes optimized for Fisher information do not depend on decoding time and are severely suboptimal when only few spikes are available. In addition, we use the neurometric functions of the ideal observer in the classification task to investigate the differential coding properties of these Fisher-optimal codes for fine and coarse discrimination. We find that the discrimination error for these codes does not decrease to zero with increasing population size, even in simple coarse discrimination tasks. Our results suggest that quite different population codes may be optimal for rapid decoding in cortical computations than those inferred from the optimization of Fisher information

    Complexity, BioComplexity, the Connectionist Conjecture and Ontology of Complexity\ud

    Get PDF
    This paper develops and integrates major ideas and concepts on complexity and biocomplexity - the connectionist conjecture, universal ontology of complexity, irreducible complexity of totality & inherent randomness, perpetual evolution of information, emergence of criticality and equivalence of symmetry & complexity. This paper introduces the Connectionist Conjecture which states that the one and only representation of Totality is the connectionist one i.e. in terms of nodes and edges. This paper also introduces an idea of Universal Ontology of Complexity and develops concepts in that direction. The paper also develops ideas and concepts on the perpetual evolution of information, irreducibility and computability of totality, all in the context of the Connectionist Conjecture. The paper indicates that the control and communication are the prime functionals that are responsible for the symmetry and complexity of complex phenomenon. The paper takes the stand that the phenomenon of life (including its evolution) is probably the nearest to what we can describe with the term “complexity”. The paper also assumes that signaling and communication within the living world and of the living world with the environment creates the connectionist structure of the biocomplexity. With life and its evolution as the substrate, the paper develops ideas towards the ontology of complexity. The paper introduces new complexity theoretic interpretations of fundamental biomolecular parameters. The paper also develops ideas on the methodology to determine the complexity of “true” complex phenomena.\u
    corecore