151 research outputs found

    Towards an Open Set of Real-World Benchmarks for Model Queries and Transformations

    Get PDF
    International audienceWith the growing size and complexity of systems under design, industry needs a generation of Model-Driven Engineering (MDE) tools, especially model query and transformation, with the proven capability to handle large-scale scenarios. While researchers are proposing several technical solutions in this sense, the community lacks a set of shared scalability benchmarks, that would simplify quantitative assessment of advancements and enable cross-evaluation of different proposals. Benchmarks in previous work have been synthesized to stress specific features of model management, lacking both generality and industrial validity. In this paper, we initiate an effort to define a set of shared benchmarks, gathering queries and transformations from real-world MDE case studies. We make these case available to community evaluation via a public MDE benchmark repository

    Language Convergence Infrastructure

    Get PDF
    The process of grammar convergence involves grammar extraction and transformation for structural equivalence and contains a range of technical challenges. These need to be addressed in order for the method to deliver useful results. The paper describes a DSL and the infrastructure behind it that automates the convergence process, hides negligible back-en

    Co-Evolution of Source Code and the Build System: Impact on the Introduction of AOSD in Legacy Systems

    Get PDF
    Software is omnipresent in our daily lives. As users demand ever more advanced features, software systems have to keep on evolving. In practice, this means that software developers need to adapt the description of a software application. Such a description not only consists of source code written down in a programming language, as a lot of knowledge is hidden in lesser known software development artifacts, like the build system. As its name suggests, the build system is responsible for building an executable program, ready for use, from the source code. There are various indications that the evolution of source code is strongly related to that of the build system. When the source code changes, the build system has to co-evolve to safeguard the ability to build an executable program. A rigid build system on the other hand limits software developers. This phenomenon especially surfaces when drastic changes in the source code are coupled with an inflexible build system, as is the case for the introduction of AOSD technology in legacy systems. AOSD is a young software development approach which enables developers to structure and compose source code in a better way. Legacy systems are old software systems which are still mission-critical, but of which the source code and the build system are no longer fully understood, and which typically make use of old(-fashioned) technology. This PhD dissertation focuses on finding an explanation for this co-evolution of source code and the build system, and on finding developer support to grasp and manage this phenomenon. We postulate four "roots of co-evolution" which represent four different ways in which source code and the build system interact with each other. Based on these roots, we have developed tool and aspect language support to understand and manage co-evolution. The roots and the tool support have been validated in case studies, both in the context of co-evolution in general and of the introduction of AOSD technology in legacy systems. The dissertation experimentally shows that co-evolution indeed is a real problem, but that specific software development and aspect language support enables developers to deal with it

    A framework for efficient execution of matrix computations

    Get PDF
    Matrix computations lie at the heart of most scientific computational tasks. The solution of linear systems of equations is a very frequent operation in many fields in science, engineering, surveying, physics and others. Other matrix operations occur frequently in many other fields such as pattern recognition and classification, or multimedia applications. Therefore, it is important to perform matrix operations efficiently. The work in this thesis focuses on the efficient execution on commodity processors of matrix operations which arise frequently in different fields.We study some important operations which appear in the solution of real world problems: some sparse and dense linear algebra codes and a classification algorithm. In particular, we focus our attention on the efficient execution of the following operations: sparse Cholesky factorization; dense matrix multiplication; dense Cholesky factorization; and Nearest Neighbor Classification.A lot of research has been conducted on the efficient parallelization of numerical algorithms. However, the efficiency of a parallel algorithm depends ultimately on the performance obtained from the computations performed on each node. The work presented in this thesis focuses on the sequential execution on a single processor.There exists a number of data structures for sparse computations which can be used in order to avoid the storage of and computation on zero elements. We work with a hierarchical data structure known as hypermatrix. A matrix is subdivided recursively an arbitrary number of times. Several pointer matrices are used to store the location ofsubmatrices at each level. The last level consists of data submatrices which are dealt with as dense submatrices. When the block size of this dense submatrices is small, the number of zeros can be greatly reduced. However, the performance obtained from BLAS3 routines drops heavily. Consequently, there is a trade-off in the size of data submatrices used for a sparse Cholesky factorization with the hypermatrix scheme. Our goal is that of reducing the overhead introduced by the unnecessary operation on zeros when a hypermatrix data structure is used to produce a sparse Cholesky factorization. In this work we study several techniques for reducing such overhead in order to obtain high performance.One of our goals is the creation of codes which work efficiently on different platforms when operating on dense matrices. To obtain high performance, the resources offered by the CPU must be properly utilized. At the same time, the memory hierarchy must be exploited to tolerate increasing memory latencies. To achieve the former, we produce inner kernels which use the CPU very efficiently. To achieve the latter, we investigate nonlinear data layouts. Such data formats can contribute to the effective use of the memory system.The use of highly optimized inner kernels is of paramount importance for obtaining efficient numerical algorithms. Often, such kernels are created by hand. However, we want to create efficient inner kernels for a variety of processors using a general approach and avoiding hand-made codification in assembly language. In this work, we present an alternative way to produce efficient kernels automatically, based on a set of simple codes written in a high level language, which can be parameterized at compilation time. The advantage of our method lies in the ability to generate very efficient inner kernels by means of a good compiler. Working on regular codes for small matrices most of the compilers we used in different platforms were creating very efficient inner kernels for matrix multiplication. Using the resulting kernels we have been able to produce high performance sparse and dense linear algebra codes on a variety of platforms.In this work we also show that techniques used in linear algebra codes can be useful in other fields. We present the work we have done in the optimization of the Nearest Neighbor classification focusing on the speed of the classification process.Tuning several codes for different problems and machines can become a heavy and unbearable task. For this reason we have developed an environment for development and automatic benchmarking of codes which is presented in this thesis.As a practical result of this work, we have been able to create efficient codes for several matrix operations on a variety of platforms. Our codes are highly competitive with other state-of-art codes for some problems

    Specializing Risc-V Cores for Performance and Power

    Get PDF

    C style guide

    Get PDF
    This document discusses recommended practices and style for programmers using the C language in the Flight Dynamics Division environment. Guidelines are based on generally recommended software engineering techniques, industry resources, and local convention. The Guide offers preferred solutions to common C programming issues and illustrates through examples of C Code

    An overview of ciao and its design philosophy

    Get PDF
    We provide an overall description of the Ciao multiparadigm programming system emphasizing some of the novel aspects and motivations behind its design and implementation. An important aspect of Ciao is that, in addition to supporting logic programming (and, in particular, Prolog), it provides the programmer with a large number of useful features from different programming paradigms and styles and that the use of each of these features (including those of Prolog) can be turned on and off at will for each program module. Thus, a given module may be using, e.g., higher order functions and constraints, while another module may be using assignment, predicates, Prolog meta-programming, and concurrency. Furthermore, the language is designed to be extensible in a simple and modular way. Another important aspect of Ciao is its programming environment, which provides a powerful preprocessor (with an associated assertion language) capable of statically finding non-trivial bugs, verifying that programs comply with specifications, and performing many types of optimizations (including automatic parallelization). Such optimizations produce code that is highly competitive with other dynamic languages or, with the (experimental) optimizing compiler, even that of static languages, all while retaining the flexibility and interactive development of a dynamic language. This compilation architecture supports modularity and separate compilation throughout. The environment also includes a powerful autodocumenter and a unit testing framework, both closely integrated with the assertion system. The paper provides an informal overview of the language and program development environment. It aims at illustrating the design philosophy rather than at being exhaustive, which would be impossible in a single journal paper, pointing instead to previous Ciao literature
    • …
    corecore