85,652 research outputs found

    Towards formal models and languages for verifiable Multi-Robot Systems

    Get PDF
    Incorrect operations of a Multi-Robot System (MRS) may not only lead to unsatisfactory results, but can also cause economic losses and threats to safety. These threats may not always be apparent, since they may arise as unforeseen consequences of the interactions between elements of the system. This call for tools and techniques that can help in providing guarantees about MRSs behaviour. We think that, whenever possible, these guarantees should be backed up by formal proofs to complement traditional approaches based on testing and simulation. We believe that tailored linguistic support to specify MRSs is a major step towards this goal. In particular, reducing the gap between typical features of an MRS and the level of abstraction of the linguistic primitives would simplify both the specification of these systems and the verification of their properties. In this work, we review different agent-oriented languages and their features; we then consider a selection of case studies of interest and implement them useing the surveyed languages. We also evaluate and compare effectiveness of the proposed solution, considering, in particular, easiness of expressing non-trivial behaviour.Comment: Changed formattin

    Towards adaptive multi-robot systems: self-organization and self-adaptation

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.The development of complex systems ensembles that operate in uncertain environments is a major challenge. The reason for this is that system designers are not able to fully specify the system during specification and development and before it is being deployed. Natural swarm systems enjoy similar characteristics, yet, being self-adaptive and being able to self-organize, these systems show beneficial emergent behaviour. Similar concepts can be extremely helpful for artificial systems, especially when it comes to multi-robot scenarios, which require such solution in order to be applicable to highly uncertain real world application. In this article, we present a comprehensive overview over state-of-the-art solutions in emergent systems, self-organization, self-adaptation, and robotics. We discuss these approaches in the light of a framework for multi-robot systems and identify similarities, differences missing links and open gaps that have to be addressed in order to make this framework possible

    A Unified Framework for Multi-Agent Agreement

    Get PDF
    Multi-Agent Agreement problems (MAP) - the ability of a population of agents to search out and converge on a common state - are central issues in many multi-agent settings, from distributed sensor networks, to meeting scheduling, to development of norms, conventions, and language. While much work has been done on particular agreement problems, no unifying framework exists for comparing MAPs that vary in, e.g., strategy space complexity, inter-agent accessibility, and solution type, and understanding their relative complexities. We present such a unification, the Distributed Optimal Agreement Framework, and show how it captures a wide variety of agreement problems. To demonstrate DOA and its power, we apply it to two well-known MAPs: convention evolution and language convergence. We demonstrate the insights DOA provides toward improving known approaches to these problems. Using a careful comparative analysis of a range of MAPs and solution approaches via the DOA framework, we identify a single critical differentiating factor: how accurately an agent can discern other agent.s states. To demonstrate how variance in this factor influences solution tractability and complexity we show its effect on the convergence time and quality of Particle Swarm Optimization approach to a generalized MAP

    Agents in Bioinformatics

    No full text
    The scope of the Technical Forum Group (TFG) on Agents in Bioinformatics (BIOAGENTS) was to inspire collaboration between the agent and bioinformatics communities with the aim of creating an opportunity to propose a different (agent-based) approach to the development of computational frameworks both for data analysis in bioinformatics and for system modelling in computational biology. During the day, the participants examined the future of research on agents in bioinformatics primarily through 12 invited talks selected to cover the most relevant topics. From the discussions, it became clear that there are many perspectives to the field, ranging from bio-conceptual languages for agent-based simulation, to the definition of bio-ontology-based declarative languages for use by information agents, and to the use of Grid agents, each of which requires further exploration. The interactions between participants encouraged the development of applications that describe a way of creating agent-based simulation models of biological systems, starting from an hypothesis and inferring new knowledge (or relations) by mining and analysing the huge amount of public biological data. In this report we summarise and reflect on the presentations and discussions

    Multi-agent pathfinding for unmanned aerial vehicles

    Get PDF
    Unmanned aerial vehicles (UAVs), commonly known as drones, have become more and more prevalent in recent years. In particular, governmental organizations and companies around the world are starting to research how UAVs can be used to perform tasks such as package deliver, disaster investigation and surveillance of key assets such as pipelines, railroads and bridges. NASA is currently in the early stages of developing an air traffic control system specifically designed to manage UAV operations in low-altitude airspace. Companies such as Amazon and Rakuten are testing large-scale drone deliver services in the USA and Japan. To perform these tasks, safe and conflict-free routes for concurrently operating UAVs must be found. This can be done using multi-agent pathfinding (mapf) algorithms, although the correct choice of algorithms is not clear. This is because many state of the art mapf algorithms have only been tested in 2D space in maps with many obstacles, while UAVs operate in 3D space in open maps with few obstacles. In addition, when an unexpected event occurs in the airspace and UAVs are forced to deviate from their original routes while inflight, new conflict-free routes must be found. Planning for these unexpected events is commonly known as contingency planning. With manned aircraft, contingency plans can be created in advance or on a case-by-case basis while inflight. The scale at which UAVs operate, combined with the fact that unexpected events may occur anywhere at any time make both advanced planning and planning on a case-by-case basis impossible. Thus, a new approach is needed. Online multi-agent pathfinding (online mapf) looks to be a promising solution. Online mapf utilizes traditional mapf algorithms to perform path planning in real-time. That is, new routes for UAVs are found while inflight. The primary contribution of this thesis is to present one possible approach to UAV contingency planning using online multi-agent pathfinding algorithms, which can be used as a baseline for future research and development. It also provides an in-depth overview and analysis of offline mapf algorithms with the goal of determining which ones are likely to perform best when applied to UAVs. Finally, to further this same goal, a few different mapf algorithms are experimentally tested and analyzed

    Research Priorities for Robust and Beneficial Artificial Intelligence

    Get PDF
    Success in the quest for artificial intelligence has the potential to bring unprecedented benefits to humanity, and it is therefore worthwhile to investigate how to maximize these benefits while avoiding potential pitfalls. This article gives numerous examples (which should by no means be construed as an exhaustive list) of such worthwhile research aimed at ensuring that AI remains robust and beneficial.Comment: This article gives examples of the type of research advocated by the open letter for robust & beneficial AI at http://futureoflife.org/ai-open-lette
    • …
    corecore