349 research outputs found

    Towards a faster and accurate supertree inference

    Get PDF
    Phylogenetic inference is one of the most challenging and important problems in computational biology. However, computing evolutionary links on data sets containing only few thousands of taxa easily becomes a daunting task. Moreover, recent advances in next-generation sequencing technologies are turning this problem even much harder, either in terms of complexity or scale. Therefore, phylogenetic inference requires new algorithms and methods to handle the unprecedented growth of biological data. In this paper, we identify several types of parallelism that are available while refining a supertree. We also present four improvements that we made to SuperFine-a state-of-The-Art supertree (meta)method-, which add support: i) to use FastTree as the inference tool; ii) to use a parallel version of FastTree, or RAxML, as the inference tool; iii) to exploit intra-polytomy parallelism within the so-called polytomy refinement phase; and iv) to exploit, at the same time, inter-polytomy and intra-polytomy parallelism within the polytomy refinement phase. Together, these improvements allow an efficient and transparent exploitation of hybrid-polytomy parallelism. Additionally, we pinpoint how future contributions should enhance the performance of such applications. Our studies show groundbreaking results in terms of the achieved speedups, specially when using biological data sets. Moreover, we show that the new parallel strategy-which exploits the hybrid-polytomy parallelism within the polytomy refinement phase-exhibits good scalability, even in the presence of asymmetric sets of tasks. Furthermore, the achieved results show that the radical improvement in performance does not impair tree accuracy, which is a key issue in phylogenetic inferences.This research was partially supported by Fundação para a Ciência e aTecnologia (grant SFRH/BD/42634/2007). We thank Rui Gonc¸alves, Rui Silva, and Tandy Warnow for fruitful discussions and valuable feedback. We thank Keshav Pingali for his valuable support and sponsorship to let us execute jobs on TACC machines. We are deeply grateful to Rui Oliveira, without whom it would not be possible to present this work. We are very grateful to the anonymous reviewers for the evaluation of our paper and for the constructive critics.info:eu-repo/semantics/publishedVersio

    Towards a faster and accurate supertree inference

    Get PDF
    Phylogenetic inference is one of the most challenging and important problems in computational biology. However, computing evolutionary links on data sets containing only few thousands of taxa easily becomes a daunting task. Moreover, recent advances in next-generation sequencing technologies are turning this problem even much harder, either in terms of complexity or scale. Therefore, phylogenetic inference requires new algorithms and methods to handle the unprecedented growth of biological data. In this paper, we identify several types of parallelism that are available while refining a supertree. We also present four improvements that we made to SuperFine-a state-of-The-Art supertree (meta)method-, which add support: i) to use FastTree as the inference tool; ii) to use a parallel version of FastTree, or RAxML, as the inference tool; iii) to exploit intra-polytomy parallelism within the so-called polytomy refinement phase; and iv) to exploit, at the same time, inter-polytomy and intra-polytomy parallelism within the polytomy refinement phase. Together, these improvements allow an efficient and transparent exploitation of hybrid-polytomy parallelism. Additionally, we pinpoint how future contributions should enhance the performance of such applications. Our studies show groundbreaking results in terms of the achieved speedups, specially when using biological data sets. Moreover, we show that the new parallel strategy-which exploits the hybrid-polytomy parallelism within the polytomy refinement phase-exhibits good scalability, even in the presence of asymmetric sets of tasks. Furthermore, the achieved results show that the radical improvement in performance does not impair tree accuracy, which is a key issue in phylogenetic inferences.This research was partially supported by Fundação para a Ciência e aTecnologia (grant SFRH/BD/42634/2007). We thank Rui Gonc¸alves, Rui Silva, and Tandy Warnow for fruitful discussions and valuable feedback. We thank Keshav Pingali for his valuable support and sponsorship to let us execute jobs on TACC machines. We are deeply grateful to Rui Oliveira, without whom it would not be possible to present this work. We are very grateful to the anonymous reviewers for the evaluation of our paper and for the constructive critics.info:eu-repo/semantics/publishedVersio

    Supertree-like methods for genome-scale species tree estimation

    Get PDF
    A critical step in many biological studies is the estimation of evolutionary trees (phylogenies) from genomic data. Of particular interest is the species tree, which illustrates how a set of species evolved from a common ancestor. While species trees were previously estimated from a few regions of the genome (genes), it is now widely recognized that biological processes can cause the evolutionary histories of individual genes to differ from each other and from the species tree. This heterogeneity across the genome is phylogenetic signal that can be leveraged to estimate species evolution with greater accuracy. Hence, species tree estimation is expected to be greatly aided by current large-scale sequencing efforts, including the 5000 Insect Genomes Project, the 10000 Plant Genomes Project, the (~60000) Vertebrate Genomes Project, and the Earth BioGenome Project, which aims to assemble genomes (or at least genome-scale data) for 1.5 million eukaryotic species in the next ten years. To analyze these forthcoming datasets, species tree estimation methods must scale to thousands of species and tens of thousands of genes; however, many of the current leading methods, which are heuristics for NP-hard optimization problems, can be prohibitively expensive on datasets of this size. In this dissertation, we argue that new methods are needed to enable scalable and statistically rigorous species tree estimation pipelines; we then seek to address this challenge through the introduction of three supertree-like methods: NJMerge, TreeMerge, and FastMulRFS. For these methods, we present theoretical results (worst-case running time analyses and proofs of statistical consistency) as well as empirical results on simulated datasets (and a fungal dataset for FastMulRFS). Overall, these methods enable statistically consistent species tree estimation pipelines that achieve comparable accuracy to the dominant optimization-based approaches while dramatically reducing running time

    Developing and applying supertree methods in Phylogenomics and Macroevolution

    Get PDF
    Supertrees can be used to combine partially overalapping trees and generate more inclusive phylogenies. It has been proposed that Maximum Likelihood (ML) supertrees method (SM) could be developed using an exponential probability distribution to model errors in the input trees (given a proposed supertree). When the tree-­‐to-­‐tree distances used in the ML computation are symmetric differences, the ML SM has been shown to be equivalent to a Majority-­‐Rule consensus SM, and hence, exactly as the latter, it has the desirable property of being a median tree (with reference to the set of input trees). The ability to estimate the likelihood of supertrees, allows implementing Bayesian (MCMC) approaches, which have the advantage to allow the support for the clades in a supertree to be properly estimated. I present here the L.U.St software package; it contains the first implementation of a ML SM and allows for the first time statistical tests on supertrees. I also characterized the first implementation of the Bayesian (MCMC) SM. Both the ML and the Bayesian (MCMC) SMs have been tested for and found to be immune to biases. The Bayesian (MCMC) SM is applied to the reanalyses of a variety of datasets (i.e. the datasets for the Metazoa and the Carnivora), and I have also recovered the first Bayesian supertree-­‐based phylogeny of the Eubacteria and the Archaebacteria. These new SMs are discussed, with reference to other, well-­‐ known SMs like Matrix Representation with Parsimony. Both the ML and Bayesian SM offer multiple attractive advantages over current alternatives

    Developing and applying supertree methods in Phylogenomics and Macroevolution

    Get PDF
    Supertrees can be used to combine partially overalapping trees and generate more inclusive phylogenies. It has been proposed that Maximum Likelihood (ML) supertrees method (SM) could be developed using an exponential probability distribution to model errors in the input trees (given a proposed supertree). When the tree-­‐to-­‐tree distances used in the ML computation are symmetric differences, the ML SM has been shown to be equivalent to a Majority-­‐Rule consensus SM, and hence, exactly as the latter, it has the desirable property of being a median tree (with reference to the set of input trees). The ability to estimate the likelihood of supertrees, allows implementing Bayesian (MCMC) approaches, which have the advantage to allow the support for the clades in a supertree to be properly estimated. I present here the L.U.St software package; it contains the first implementation of a ML SM and allows for the first time statistical tests on supertrees. I also characterized the first implementation of the Bayesian (MCMC) SM. Both the ML and the Bayesian (MCMC) SMs have been tested for and found to be immune to biases. The Bayesian (MCMC) SM is applied to the reanalyses of a variety of datasets (i.e. the datasets for the Metazoa and the Carnivora), and I have also recovered the first Bayesian supertree-­‐based phylogeny of the Eubacteria and the Archaebacteria. These new SMs are discussed, with reference to other, well-­‐ known SMs like Matrix Representation with Parsimony. Both the ML and Bayesian SM offer multiple attractive advantages over current alternatives

    Mega-phylogeny approach for comparative biology: an alternative to supertree and supermatrix approaches

    Get PDF
    Abstract Background Biology has increasingly recognized the necessity to build and utilize larger phylogenies to address broad evolutionary questions. Large phylogenies have facilitated the discovery of differential rates of molecular evolution between trees and herbs. They have helped us understand the diversification patterns of mammals as well as the patterns of seed evolution. In addition to these broad evolutionary questions there is increasing awareness of the importance of large phylogenies for addressing conservation issues such as biodiversity hotspots and response to global change. Two major classes of methods have been employed to accomplish the large tree-building task: supertrees and supermatrices. Although these methods are continually being developed, they have yet to be made fully accessible to comparative biologists making extremely large trees rare. Results Here we describe and demonstrate a modified supermatrix method termed mega-phylogeny that uses databased sequences as well as taxonomic hierarchies to make extremely large trees with denser matrices than supermatrices. The two major challenges facing large-scale supermatrix phylogenetics are assembling large data matrices from databases and reconstructing trees from those datasets. The mega-phylogeny approach addresses the former as the latter is accomplished by employing recently developed methods that have greatly reduced the run time of large phylogeny construction. We present an algorithm that requires relatively little human intervention. The implemented algorithm is demonstrated with a dataset and phylogeny for Asterales (within Campanulidae) containing 4954 species and 12,033 sites and an rbcL matrix for green plants (Viridiplantae) with 13,533 species and 1,401 sites. Conclusion By examining much larger phylogenies, patterns emerge that were otherwise unseen. The phylogeny of Viridiplantae successfully reconstructs major relationships of vascular plants that previously required many more genes. These demonstrations underscore the importance of using large phylogenies to uncover important evolutionary patterns and we present a fast and simple method for constructing these phylogenies.</p
    corecore