7,100 research outputs found

    Big Data and Analysis of Data Transfers for International Research Networks Using NetSage

    Get PDF
    Modern science is increasingly data-driven and collaborative in nature. Many scientific disciplines, including genomics, high-energy physics, astronomy, and atmospheric science, produce petabytes of data that must be shared with collaborators all over the world. The National Science Foundation-supported International Research Network Connection (IRNC) links have been essential to enabling this collaboration, but as data sharing has increased, so has the amount of information being collected to understand network performance. New capabilities to measure and analyze the performance of international wide-area networks are essential to ensure end-users are able to take full advantage of such infrastructure for their big data applications. NetSage is a project to develop a unified, open, privacy-aware network measurement, and visualization service to address the needs of monitoring today's high-speed international research networks. NetSage collects data on both backbone links and exchange points, which can be as much as 1Tb per month. This puts a significant strain on hardware, not only in terms storage needs to hold multi-year historical data, but also in terms of processor and memory needs to analyze the data to understand network behaviors. This paper addresses the basic NetSage architecture, its current data collection and archiving approach, and details the constraints of dealing with this big data problem of handling vast amounts of monitoring data, while providing useful, extensible visualization to end users

    Design Fiction Diegetic Prototyping: A Research Framework for Visualizing Service Innovations

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Purpose: This paper presents a design fiction diegetic prototyping methodology and research framework for investigating service innovations that reflect future uses of new and emerging technologies. Design/methodology/approach: Drawing on speculative fiction, we propose a methodology that positions service innovations within a six-stage research development framework. We begin by reviewing and critiquing designerly approaches that have traditionally been associated with service innovations and futures literature. In presenting our framework, we provide an example of its application to the Internet of Things (IoT), illustrating the central tenets proposed and key issues identified. Findings: The research framework advances a methodology for visualizing future experiential service innovations, considering how realism may be integrated into a designerly approach. Research limitations/implications: Design fiction diegetic prototyping enables researchers to express a range of ‘what if’ or ‘what can it be’ research questions within service innovation contexts. However, the process encompasses degrees of subjectivity and relies on knowledge, judgment and projection. Practical implications: The paper presents an approach to devising future service scenarios incorporating new and emergent technologies in service contexts. The proposed framework may be used as part of a range of research designs, including qualitative, quantitative and mixed method investigations. Originality: Operationalizing an approach that generates and visualizes service futures from an experiential perspective contributes to the advancement of techniques that enables the exploration of new possibilities for service innovation research

    On intelligible multimodal visual analysis

    Get PDF
    Analyzing data becomes an important skill in a more and more digital world. Yet, many users are facing knowledge barriers preventing them to independently conduct their data analysis. To tear down some of these barriers, multimodal interaction for visual analysis has been proposed. Multimodal interaction through speech and touch enables not only experts, but also novice users to effortlessly interact with such kind of technology. However, current approaches do not take the user differences into account. In fact, whether visual analysis is intelligible ultimately depends on the user. In order to close this research gap, this dissertation explores how multimodal visual analysis can be personalized. To do so, it takes a holistic view. First, an intelligible task space of visual analysis tasks is defined by considering personalization potentials. This task space provides an initial basis for understanding how effective personalization in visual analysis can be approached. Second, empirical analyses on speech commands in visual analysis as well as used visualizations from scientific publications further reveal patterns and structures. These behavior-indicated findings help to better understand expectations towards multimodal visual analysis. Third, a technical prototype is designed considering the previous findings. Enriching the visual analysis by a persistent dialogue and a transparency of the underlying computations, conducted user studies show not only advantages, but address the relevance of considering the user’s characteristics. Finally, both communications channels – visualizations and dialogue – are personalized. Leveraging linguistic theory and reinforcement learning, the results highlight a positive effect of adjusting to the user. Especially when the user’s knowledge is exceeded, personalizations helps to improve the user experience. Overall, this dissertations confirms not only the importance of considering the user’s characteristics in multimodal visual analysis, but also provides insights on how an intelligible analysis can be achieved. By understanding the use of input modalities, a system can focus only on the user’s needs. By understanding preferences on the output modalities, the system can better adapt to the user. Combining both directions imporves user experience and contributes towards an intelligible multimodal visual analysis

    Supporting ethnographic studies of ubiquitous computing in the wild

    Get PDF
    Ethnography has become a staple feature of IT research over the last twenty years, shaping our understanding of the social character of computing systems and informing their design in a wide variety of settings. The emergence of ubiquitous computing raises new challenges for ethnography however, distributing interaction across a burgeoning array of small, mobile devices and online environments which exploit invisible sensing systems. Understanding interaction requires ethnographers to reconcile interactions that are, for example, distributed across devices on the street with online interactions in order to assemble coherent understandings of the social character and purchase of ubiquitous computing systems. We draw upon four recent studies to show how ethnographers are replaying system recordings of interaction alongside existing resources such as video recordings to do this and identify key challenges that need to be met to support ethnographic study of ubiquitous computing in the wild

    Health Figures: An Open Source JavaScript Library for Health Data Visualization

    Get PDF
    The way we look at data has a great impact on how we can understand it, particularly when the data is related to health and wellness. Due to the increased use of self-tracking devices and the ongoing shift towards preventive medicine, better understanding of our health data is an important part of improving the general welfare of the citizens. Electronic Health Records, self-tracking devices and mobile applications provide a rich variety of data but it often becomes difficult to understand. We implemented the hFigures library inspired on the hGraph visualization with additional improvements. The purpose of the library is to provide a visual representation of the evolution of health measurements in a complete and useful manner. We researched the usefulness and usability of the library by building an application for health data visualization in a health coaching program. We performed a user evaluation with Heuristic Evaluation, Controlled User Testing and Usability Questionnaires. In the Heuristics Evaluation the average response was 6.3 out of 7 points and the Cognitive Walkthrough done by usability experts indicated no design or mismatch errors. In the CSUQ usability test the system obtained an average score of 6.13 out of 7, and in the ASQ usability test the overall satisfaction score was 6.64 out of 7. We developed hFigures, an open source library for visualizing a complete, accurate and normalized graphical representation of health data. The idea is based on the concept of the hGraph but it provides additional key features, including a comparison of multiple health measurements over time. We conducted a usability evaluation of the library as a key component of an application for health and wellness monitoring. The results indicate that the data visualization library was helpful in assisting users in understanding health data and its evolution over time.Comment: BMC Medical Informatics and Decision Making 16.1 (2016

    Interactions in Visualizations to Support Knowledge Activation

    Get PDF
    Humans have several exceptional abilities, one of which is the perceptual tasks of their visual sense. Humans have the unique ability to perceive data and identify patterns, trends, and outliers. This research investigates the design of interactive visualizations to identify the benefits of interacting with information. The research question leading the investigation is how does interacting with visualizations support analytical reasoning of emergent information to activate knowledge? The study uses the theory of distributed cognition and human-information interaction to apply the design science research framework. The motivation behind the research is to identify guidelines for interactive visualizations to enhance a user’s ability to make decisions in dynamic situations and apply knowledge gleaned from the visualization. An experiment is used to analyze the use of an interactive dashboard in a dynamic decision-making situation. The results of this experiment specifically look at the combination of interactions as they support the distribution of cognition over three spaces of a human-visualization cognitive system. The results provide insight into the benefits that interactions have for enhancing analytical reasoning, expanding the use of visualizations beyond communicating or disseminating information. Providing a broad range of interactions that work with multiple views of information increases the opportunities that users have to complete tasks. This research contributes to the information visualization discipline by expanding the focus from representing data to representing and interacting with information. Secondly, my results provide an example of a qualitative assessment based on the value of visualization, in comparison to traditional usability assessment
    • 

    corecore