535 research outputs found

    Immersive Insights: A Hybrid Analytics System for Collaborative Exploratory Data Analysis

    Full text link
    In the past few years, augmented reality (AR) and virtual reality (VR) technologies have experienced terrific improvements in both accessibility and hardware capabilities, encouraging the application of these devices across various domains. While researchers have demonstrated the possible advantages of AR and VR for certain data science tasks, it is still unclear how these technologies would perform in the context of exploratory data analysis (EDA) at large. In particular, we believe it is important to better understand which level of immersion EDA would concretely benefit from, and to quantify the contribution of AR and VR with respect to standard analysis workflows. In this work, we leverage a Dataspace reconfigurable hybrid reality environment to study how data scientists might perform EDA in a co-located, collaborative context. Specifically, we propose the design and implementation of Immersive Insights, a hybrid analytics system combining high-resolution displays, table projections, and augmented reality (AR) visualizations of the data. We conducted a two-part user study with twelve data scientists, in which we evaluated how different levels of data immersion affect the EDA process and compared the performance of Immersive Insights with a state-of-the-art, non-immersive data analysis system.Comment: VRST 201

    Design by immersion: A transdisciplinary approach to problem-driven visualizations

    Get PDF
    While previous work exists on how to conduct and disseminate insights from problem-driven visualization work and design studies, the literature does not address how to accomplish these goals in transdisciplinary teams in ways that advance all disciplines involved. In this paper we introduce and define a new methodological paradigm we call design by immersion, which provides an alternative perspective on problem-driven visualization work. Design by immersion embeds transdisciplinary experiences at the center of the visualization process by having visualization researchers participate in the work of the target domain (or domain experts participate in visualization research). Based on our own combined experiences of working on cross-disciplinary, problem-driven visualization projects, we present six case studies that expose the opportunities that design by immersion enables, including (1) exploring new domain-inspired visualization design spaces, (2) enriching domain understanding through personal experiences, and (3) building strong transdisciplinary relationships. Furthermore, we illustrate how the process of design by immersion opens up a diverse set of design activities that can be combined in different ways depending on the type of collaboration, project, and goals. Finally, we discuss the challenges and potential pitfalls of design by immersion

    Development of VR/AR applications for experimental tests of beams, columns, and frames

    Get PDF
    This material may be downloaded for personal use only. Any other use requires prior permission of the American Society of Civil Engineers. This material may be found at https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29CP.1943-5487.0000908.This paper depicts a set of virtual reality (VR) and augmented reality (AR) applications conceived for the enrichment of laboratory experiences within the field of structural engineering. The experimental program corresponds to the study of beams, columns, and frames of austenitic stainless steel subjected to different types of static loading. The development of these applications encompasses the use of measured data from sensors, the use of 3D modeling tools, the use of game engines, and the corresponding mathematical treatment and postprocess of the structural tests in a real-time fashion. The developed applications provide new possibilities for structural engineering laboratory experiences. In both cases (VR and AR), the developed applications are meant to enhance the experimental program experience to a variety of target users (researchers, technicians, students) by adding customized information related to the structural behavior of all elements during the tests as well as to basic concepts of health and safety in structural engineering laboratories.This experimental program was developed in the frame of Project BIA2016-75678-R, AEI/FEDER, UE “Comportamiento estructural de pórticos de acero inoxidable. Seguridad frente a acciones accidentales de sismo y fuego,” funded by the MINECO (Spain). Financial support from the Industrial Doctorate program (Ref. ID.:2017-DI-069) of AGAUR, Government of Catalonia, is acknowledged by the third author.Peer ReviewedPostprint (author's final draft

    "TORINO 1911" project: A contribution of a SLAM-based survey to extensive 3D heritage modeling

    Get PDF
    In the framework of the digital documentation of complex environments the advanced Geomatics researches offers integrated solution and multi-sensor strategies for the 3D accurate reconstruction of stratified structures and articulated volumes in the heritage domain. The use of handheld devices for rapid mapping, both image- and range-based, can help the production of suitable easy-to use and easy-navigable 3D model for documentation projects. These types of reality-based modelling could support, with their tailored integrated geometric and radiometric aspects, valorisation and communication projects including virtual reconstructions, interactive navigation settings, immersive reality for dissemination purposes and evoking past places and atmospheres. The aim of this research is localized within the “Torino 1911” project, led by the University of San Diego (California) in cooperation with the PoliTo. The entire project is conceived for multi-scale reconstruction of the real and no longer existing structures in the whole park space of more than 400,000&thinsp;m<sup>2</sup>, for a virtual and immersive visualization of the Turin 1911 International “Fabulous Exposition” event, settled in the Valentino Park. Particularly, in the presented research, a 3D metric documentation workflow is proposed and validated in order to integrate the potentialities of LiDAR mapping by handheld SLAM-based device, the ZEB REVO Real Time instrument by GeoSLAM (2017 release), instead of TLS consolidated systems. Starting from these kind of models, the crucial aspects of the trajectories performances in the 3D reconstruction and the radiometric content from imaging approaches are considered, specifically by means of compared use of common DSLR cameras and portable sensors

    Interactive molecular dynamics in virtual reality from quantum chemistry to drug binding: An open-source multi-person framework

    Get PDF
    © 2019 Author(s). As molecular scientists have made progress in their ability to engineer nanoscale molecular structure, we face new challenges in our ability to engineer molecular dynamics (MD) and flexibility. Dynamics at the molecular scale differs from the familiar mechanics of everyday objects because it involves a complicated, highly correlated, and three-dimensional many-body dynamical choreography which is often nonintuitive even for highly trained researchers. We recently described how interactive molecular dynamics in virtual reality (iMD-VR) can help to meet this challenge, enabling researchers to manipulate real-time MD simulations of flexible structures in 3D. In this article, we outline various efforts to extend immersive technologies to the molecular sciences, and we introduce "Narupa," a flexible, open-source, multiperson iMD-VR software framework which enables groups of researchers to simultaneously cohabit real-time simulation environments to interactively visualize and manipulate the dynamics of molecular structures with atomic-level precision. We outline several application domains where iMD-VR is facilitating research, communication, and creative approaches within the molecular sciences, including training machines to learn potential energy functions, biomolecular conformational sampling, protein-ligand binding, reaction discovery using "on-the-fly" quantum chemistry, and transport dynamics in materials. We touch on iMD-VR's various cognitive and perceptual affordances and outline how these provide research insight for molecular systems. By synergistically combining human spatial reasoning and design insight with computational automation, technologies such as iMD-VR have the potential to improve our ability to understand, engineer, and communicate microscopic dynamical behavior, offering the potential to usher in a new paradigm for engineering molecules and nano-architectures

    Review of Web Mapping: Eras, Trends and Directions

    Get PDF
    Web mapping and the use of geospatial information online have evolved rapidly over the past few decades. Almost everyone in the world uses mapping information, whether or not one realizes it. Almost every mobile phone now has location services and every event and object on the earth has a location. The use of this geospatial location data has expanded rapidly, thanks to the development of the Internet. Huge volumes of geospatial data are available and daily being captured online, and are used in web applications and maps for viewing, analysis, modeling and simulation. This paper reviews the developments of web mapping from the first static online map images to the current highly interactive, multi-sourced web mapping services that have been increasingly moved to cloud computing platforms. The whole environment of web mapping captures the integration and interaction between three components found online, namely, geospatial information, people and functionality. In this paper, the trends and interactions among these components are identified and reviewed in relation to the technology developments. The review then concludes by exploring some of the opportunities and directions

    Advancing Ubiquitous Collaboration for Telehealth - A Framework to Evaluate Technology-mediated Collaborative Workflow for Telehealth, Hypertension Exam Workflow Study

    Get PDF
    Healthcare systems are under siege globally regarding technology adoption; the recent pandemic has only magnified the issues. Providers and patients alike look to new enabling technologies to establish real-time connectivity and capability for a growing range of remote telehealth solutions. The migration to new technology is not as seamless as clinicians and patients would like since the new workflows pose new responsibilities and barriers to adoption across the telehealth ecosystem. Technology-mediated workflows (integrated software and personal medical devices) are increasingly important in patient-centered healthcare; software-intense systems will become integral in prescribed treatment plans [1]. My research explored the path to ubiquitous adoption of technology-mediated workflows from historic roots in the CSCW domain to arrive at an expanded method for evaluating collaborative workflows. This new approach for workflow evaluation, the Collaborative Space – Analysis Framework (CS-AF), was then deployed in a telehealth empirical study of a hypertension exam workflow to evaluate the gains and gaps associated with a technology-mediated workflow enhancements. My findings indicate that technology alone is not the solution; rather, it is an integrated approach that establishes “relative advantage” for patients’ in their personal healthcare plans. Results suggest wider use of the CS-AF for future technology-mediated workflow evaluations in telehealth and other technology-rich domains

    Situated Analytics for Data Scientists

    Get PDF
    Much of Mark Weiser's vision of ``ubiquitous computing'' has come to fruition: We live in a world of interfaces that connect us with systems, devices, and people wherever we are. However, those of us in jobs that involve analyzing data and developing software find ourselves tied to environments that limit when and where we may conduct our work; it is ungainly and awkward to pull out a laptop during a stroll through a park, for example, but difficult to write a program on one's phone. In this dissertation, I discuss the current state of data visualization in data science and analysis workflows, the emerging domains of immersive and situated analytics, and how immersive and situated implementations and visualization techniques can be used to support data science. I will then describe the results of several years of my own empirical work with data scientists and other analytical professionals, particularly (though not exclusively) those employed with the U.S. Department of Commerce. These results, as they relate to visualization and visual analytics design based on user task performance, observations by the researcher and participants, and evaluation of observational data collected during user sessions, represent the first thread of research I will discuss in this dissertation. I will demonstrate how they might act as the guiding basis for my implementation of immersive and situated analytics systems and techniques. As a data scientist and economist myself, I am naturally inclined to want to use high-frequency observational data to the end of realizing a research goal; indeed, a large part of my research contributions---and a second ``thread'' of research to be presented in this dissertation---have been around interpreting user behavior using real-time data collected during user sessions. I argue that the relationship between immersive analytics and data science can and should be reciprocal: While immersive implementations can support data science work, methods borrowed from data science are particularly well-suited for supporting the evaluation of the embodied interactions common in immersive and situated environments. I make this argument based on both the ease and importance of collecting spatial data from user sessions from the sensors required for immersive systems to function that I have experienced during the course of my own empirical work with data scientists. As part of this thread of research working from this perspective, this dissertation will introduce a framework for interpreting user session data that I evaluate with user experience researchers working in the tech industry. Finally, this dissertation will present a synthesis of these two threads of research. I combine the design guidelines I derive from my empirical work with machine learning and signal processing techniques to interpret user behavior in real time in Wizualization, a mid-air gesture and speech-based augmented reality visual analytics system

    VGC 2023 - Unveiling the dynamic Earth with digital methods: 5th Virtual Geoscience Conference: Book of Abstracts

    Get PDF
    Conference proceedings of the 5th Virtual Geoscience Conference, 21-22 September 2023, held in Dresden. The VGC is a multidisciplinary forum for researchers in geoscience, geomatics and related disciplines to share their latest developments and applications.:Short Courses 9 Workshops Stream 1 10 Workshop Stream 2 11 Workshop Stream 3 12 Session 1 – Point Cloud Processing: Workflows, Geometry & Semantics 14 Session 2 – Visualisation, communication & Teaching 27 Session 3 – Applying Machine Learning in Geosciences 36 Session 4 – Digital Outcrop Characterisation & Analysis 49 Session 5 – Airborne & Remote Mapping 58 Session 6 – Recent Developments in Geomorphic Process and Hazard Monitoring 69 Session 7 – Applications in Hydrology & Ecology 82 Poster Contributions 9
    • …
    corecore