6,726 research outputs found

    Task planning using physics-based heuristics on manipulation actions

    Get PDF
    © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.In order to solve mobile manipulation problems, the efficient combination of task and motion planning is usually required. Moreover, the incorporation of physics-based information has recently been taken into account in order to plan the tasks in a more realistic way. In the present paper, a task and motion planning framework is proposed based on a modified version of the Fast-Forward task planner that is guided by physics-based knowledge. The proposal uses manipulation knowledge for reasoning on symbolic literals (both in offline and online modes) taking into account geometric information in order to evaluate the applicability as well as feasibility of actions while evaluating the heuristic cost. It results in an efficient search of the state space and in the obtention of low-cost physically-feasible plans. The proposal has been implemented and is illustrated with a manipulation problem consisting of a mobile robot and some fixed and manipulatable objects.Peer ReviewedPostprint (author's final draft

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Conceptual spatial representations for indoor mobile robots

    Get PDF
    We present an approach for creating conceptual representations of human-made indoor environments using mobile robots. The concepts refer to spatial and functional properties of typical indoor environments. Following findings in cognitive psychology, our model is composed of layers representing maps at different levels of abstraction. The complete system is integrated in a mobile robot endowed with laser and vision sensors for place and object recognition. The system also incorporates a linguistic framework that actively supports the map acquisition process, and which is used for situated dialogue. Finally, we discuss the capabilities of the integrated system

    Proceedings of the 1st Standardized Knowledge Representation and Ontologies for Robotics and Automation Workshop

    Get PDF
    Welcome to IEEE-ORA (Ontologies for Robotics and Automation) IROS workshop. This is the 1st edition of the workshop on! Standardized Knowledge Representation and Ontologies for Robotics and Automation. The IEEE-ORA 2014 workshop was held on the 18th September, 2014 in Chicago, Illinois, USA. In!the IEEE-ORA IROS workshop, 10 contributions were presented from 7 countries in North and South America, Asia and Europe. The presentations took place in the afternoon, from 1:30 PM to 5:00 PM. The first session was dedicated to “Standards for Knowledge Representation in Robotics”, where presentations were made from the IEEE working group standards for robotics and automation, and also from the ISO TC 184/SC2/WH7. The second session was dedicated to “Core and Application Ontologies”, where presentations were made for core robotics ontologies, and also for industrial and robot assisted surgery ontologies. Three posters were presented in emergent applications of ontologies in robotics. We would like to express our thanks to all participants. First of all to the authors, whose quality work is the essence of this workshop. Next, to all the members of the international program committee, who helped us with their expertise and valuable time. We would also like to deeply thank the IEEE-IROS 2014 organizers for hosting this workshop. Our deep gratitude goes to the IEEE Robotics and Automation Society, that sponsors! the IEEE-ORA group activities, and also to the scientific organizations that kindly agreed to sponsor all the workshop authors work

    Ontologies for Industry 4.0

    Get PDF
    The current fourth industrial revolution, or ‘Industry 4.0’ (I4.0), is driven by digital data, connectivity, and cyber systems, and it has the potential to create impressive/new business opportunities. With the arrival of I4.0, the scenario of various intelligent systems interacting reliably and securely with each other becomes a reality which technical systems need to address. One major aspect of I4.0 is to adopt a coherent approach for the semantic communication in between multiple intelligent systems, which include human and artificial (software or hardware) agents. For this purpose, ontologies can provide the solution by formalizing the smart manufacturing knowledge in an interoperable way. Hence, this paper presents the few existing ontologies for I4.0, along with the current state of the standardization effort in the factory 4.0 domain and examples of real-world scenarios for I4.0.Peer ReviewedPostprint (published version

    Towards a robot task ontology standard

    Get PDF
    Ontologies serve robotics in many ways, particularly in de- scribing and driving autonomous functions. These functions are built around robot tasks. In this paper, we introduce the IEEE Robot Task Representation Study Group, including its work plan, initial development efforts, and proposed use cases. This effort aims to develop a standard that provides a comprehensive on- tology encompassing robot task structures and reasoning across robotic domains, addressing both the relationships between tasks and platforms and the relationships between tasks and users. Its goal is to develop a knowledge representation that addresses task structure, with decomposition into subclasses, categories, and/or relations. It includes attributes, both common across tasks and specific to particular tasks and task types
    corecore