554 research outputs found

    Integration of low-cost supervisory mobile robots in domestic wireless sensor networks

    Get PDF
    This paper presents a communication interface between supervisory low-cost mobile robots and domestic Wireless Sensor Network (WSN) based on the Zig Bee protocol from different manufacturers. The communication interface allows control and communication with other network devices using the same protocol. The robot can receive information from sensor devices (temperature, humidity, luminosity) and send commands to actuator devices (lights, shutters, thermostats) from different manufacturers. The architecture of the system, the interfaces and devices needed to establish the communication are described in the paper

    Classifying Compliant Manipulation Tasks for Automated Planning in Robotics

    Get PDF
    Many household chores and industrial manufacturing tasks require a certain compliant behavior to make deliberate physical contact with the environment. This compliant behavior can be implemented by modern robotic manipulators. However, in order to plan the task execution, a robot requires generic process models of these tasks which can be adapted to different domains and varying environmental conditions. In this work we propose a classification of compliant manipulation tasks meeting these requirements, to derive related actions for automated planning. We also present a classification for the sub-category of wiping tasks, which are most common and of great importance in service robotics. We categorize actions from an object-centric perspective to make them independent of any specific robot kinematics. The aim of the proposed taxonomy is to guide robotic programmers to develop generic actions for any kind of robotic systems in arbitrary domains

    From Verbs to Tasks: An Integrated Account of Learning Tasks from Situated Interactive Instruction.

    Full text link
    Intelligent collaborative agents are becoming common in the human society. From virtual assistants such as Siri and Google Now to assistive robots, they contribute to human activities in a variety of ways. As they become more pervasive, the challenge of customizing them to a variety of environments and tasks becomes critical. It is infeasible for engineers to program them for each individual use. Our research aims at building interactive robots and agents that adapt to new environments autonomously by interacting with human users using natural modalities. This dissertation studies the problem of learning novel tasks from human-agent dialog. We propose a novel approach for interactive task learning, situated interactive instruction (SII), and investigate approaches to three computational challenges that arise in designing SII agents: situated comprehension, mixed-initiative interaction, and interactive task learning. We propose a novel mixed-modality grounded representation for task verbs which encompasses their lexical, semantic, and task-oriented aspects. This representation is useful in situated comprehension and can be learned through human-agent interactions. We introduce the Indexical Model of comprehension that can exploit extra-linguistic contexts for resolving semantic ambiguities in situated comprehension of task commands. The Indexical model is integrated with a mixed-initiative interaction model that facilitates a flexible task-oriented human-agent dialog. This dialog serves as the basis of interactive task learning. We propose an interactive variation of explanation-based learning that can acquire the proposed representation. We demonstrate that our learning paradigm is efficient, can transfer knowledge between structurally similar tasks, integrates agent-driven exploration with instructional learning, and can acquire several tasks. The methods proposed in this thesis are integrated in Rosie - a generally instructable agent developed in the Soar cognitive architecture and embodied on a table-top robot.PhDComputer Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/111573/1/shiwali_1.pd

    Cognitive Reasoning for Compliant Robot Manipulation

    Get PDF
    Physically compliant contact is a major element for many tasks in everyday environments. A universal service robot that is utilized to collect leaves in a park, polish a workpiece, or clean solar panels requires the cognition and manipulation capabilities to facilitate such compliant interaction. Evolution equipped humans with advanced mental abilities to envision physical contact situations and their resulting outcome, dexterous motor skills to perform the actions accordingly, as well as a sense of quality to rate the outcome of the task. In order to achieve human-like performance, a robot must provide the necessary methods to represent, plan, execute, and interpret compliant manipulation tasks. This dissertation covers those four steps of reasoning in the concept of intelligent physical compliance. The contributions advance the capabilities of service robots by combining artificial intelligence reasoning methods and control strategies for compliant manipulation. A classification of manipulation tasks is conducted to identify the central research questions of the addressed topic. Novel representations are derived to describe the properties of physical interaction. Special attention is given to wiping tasks which are predominant in everyday environments. It is investigated how symbolic task descriptions can be translated into meaningful robot commands. A particle distribution model is used to plan goal-oriented wiping actions and predict the quality according to the anticipated result. The planned tool motions are converted into the joint space of the humanoid robot Rollin' Justin to perform the tasks in the real world. In order to execute the motions in a physically compliant fashion, a hierarchical whole-body impedance controller is integrated into the framework. The controller is automatically parameterized with respect to the requirements of the particular task. Haptic feedback is utilized to infer contact and interpret the performance semantically. Finally, the robot is able to compensate for possible disturbances as it plans additional recovery motions while effectively closing the cognitive control loop. Among others, the developed concept is applied in an actual space robotics mission, in which an astronaut aboard the International Space Station (ISS) commands Rollin' Justin to maintain a Martian solar panel farm in a mock-up environment. This application demonstrates the far-reaching impact of the proposed approach and the associated opportunities that emerge with the availability of cognition-enabled service robots

    Is a robot an appliance, teammate, or friend? age-related differences in expectations of and attitudes toward personal home-based robots

    Get PDF
    Future advances in technology may allow home-based robots to perform complex collaborative activities with individuals of different ages. Two studies were conducted to understand the expectations of and attitudes toward home-based robots by younger and older adults. One study involved questionnaires sent to 2500 younger adults (aged 18-28) and 2500 older adults (aged 65-86) in the Atlanta Metropolitan area. One hundred and eighty questionnaires were completed and returned by individuals in the targeted age groups. For the questionnaire, participants were asked to imagine a robot in their home and then to answer questions about how well characteristics matched their imagined robot. Participants' technology and robot experience, demographic information, and health information were also collected. In conjunction with the questionnaire study, twelve younger adults (aged 19-26) and twenty-four older adults in two sub-age groups (younger-older, aged 65-75, and older-older aged 77-85) were interviewed about their expectations of and attitudes toward a robot in their home. They were asked to imagine a robot in their home and answer numerous questions about the tasks their envisioned robot would perform, the appearance of the robot, and other general questions about their interaction with the robot. The results of the studies suggest that individuals have many different ideas about what a robot in the home would be like. Mostly, they want a robot to perform mundane or repetitive tasks, such as cleaning, and picture a robot as a time-saving device. However, individuals are willing to have a robot perform other types of tasks, if they see benefits of having the robot perform those tasks. The ability of the robot to perform tasks efficiently, with minimal effort on the part of the human, appears to be more important in determining acceptance of the robot than its social ability or appearance. Overall, individuals both younger and older seem to be very open to the idea of a robot in their home as long it is useful and not too difficult to use.Ph.D.Committee Chair: Fisk, Arthur D.; Committee Member: Corso, Gregory; Committee Member: Essa, Irfan A.; Committee Member: Roberts, James S.; Committee Member: Rogers, Wendy A.; Committee Member: Van Ittersum, Koert

    The CIRDO Corpus: Comprehensive Audio/Video Database of Domestic Falls of Elderly People

    No full text
    International audienceAmbient Assisted Living aims at enhancing the quality of life of older and disabled people at home thanks to Smart Homes. In particular, regarding elderly living alone at home, the detection of distress situation after a fall is very important to reassure this kind of population. However, many studies do not include tests in real settings, because data collection in this domain is very expensive and challenging and because of the few available data sets. The CIRDOcorpus is a dataset recorded in realistic conditions in DOMUS, a fully equipped Smart Home with microphones and home automation sensors, in which participants performed scenarios including real falls on a carpet and calls for help. These scenarios were elaborated thanks to a field study involving elderly persons. Experiments related in a first part to distress detection in real-time using audio and speech analysis and in a second part to fall detection using video analysis are presented. Results show the difficulty of the task. The database can be used as standardized database by researchers to evaluate and compare their systems for elderly person's assistance. Keywords: audio and video data set, multimodal corpus, natural language and multimodal interaction, Ambient Assisted Living (AAL), distress situation

    A review and comparison of ontology-based approaches to robot autonomy

    Get PDF
    Within the next decades, robots will need to be able to execute a large variety of tasks autonomously in a large variety of environments. To relax the resulting programming effort, a knowledge-enabled approach to robot programming can be adopted to organize information in re-usable knowledge pieces. However, for the ease of reuse, there needs to be an agreement on the meaning of terms. A common approach is to represent these terms using ontology languages that conceptualize the respective domain. In this work, we will review projects that use ontologies to support robot autonomy. We will systematically search for projects that fulfill a set of inclusion criteria and compare them with each other with respect to the scope of their ontology, what types of cognitive capabilities are supported by the use of ontologies, and which is their application domain.Peer ReviewedPostprint (author's final draft
    • …
    corecore