92 research outputs found

    Consistent spectral approximation of Koopman operators using resolvent compactification

    Full text link
    Koopman operators and transfer operators represent dynamical systems through their induced linear action on vector spaces of observables, enabling the use of operator-theoretic techniques to analyze nonlinear dynamics in state space. The extraction of approximate Koopman or transfer operator eigenfunctions (and the associated eigenvalues) from an unknown system is nontrivial, particularly if the system has mixed or continuous spectrum. In this paper, we describe a spectrally accurate approach to approximate the Koopman operator on L2L^2 for measure-preserving, continuous-time systems via a ``compactification'' of the resolvent of the generator. This approach employs kernel integral operators to approximate the skew-adjoint Koopman generator by a family of skew-adjoint operators with compact resolvent, whose spectral measures converge in a suitable asymptotic limit, and whose eigenfunctions are approximately periodic. Moreover, we develop a data-driven formulation of our approach, utilizing data sampled on dynamical trajectories and associated dictionaries of kernel eigenfunctions for operator approximation. The data-driven scheme is shown to converge in the limit of large training data under natural assumptions on the dynamical system and observation modality. We explore applications of this technique to dynamical systems on tori with pure point spectra and the Lorenz 63 system as an example with mixing dynamics.Comment: 60 pages, 7 figure

    Determinantal probability measures

    Get PDF
    Determinantal point processes have arisen in diverse settings in recent years and have been investigated intensively. We study basic combinatorial and probabilistic aspects in the discrete case. Our main results concern relationships with matroids, stochastic domination, negative association, completeness for infinite matroids, tail triviality, and a method for extension of results from orthogonal projections to positive contractions. We also present several new avenues for further investigation, involving Hilbert spaces, combinatorics, homology, and group representations, among other areas.Comment: 50 pp; added reference to revision. Revised introduction and made other small change

    Kernel Analog Forecasting: Multiscale Test Problems

    Get PDF
    Data-driven prediction is becoming increasingly widespread as the volume of data available grows and as algorithmic development matches this growth. The nature of the predictions made, and the manner in which they should be interpreted, depends crucially on the extent to which the variables chosen for prediction are Markovian, or approximately Markovian. Multiscale systems provide a framework in which this issue can be analyzed. In this work kernel analog forecasting methods are studied from the perspective of data generated by multiscale dynamical systems. The problems chosen exhibit a variety of different Markovian closures, using both averaging and homogenization; furthermore, settings where scale-separation is not present and the predicted variables are non-Markovian, are also considered. The studies provide guidance for the interpretation of data-driven prediction methods when used in practice.Comment: 30 pages, 14 figures; clarified several ambiguous parts, added references, and a comparison with Lorenz' original method (Sec. 4.5

    Aspects of solving non-linear boundary value problems numerically

    Get PDF

    On the Number of Zeros of Abelian Integrals: A Constructive Solution of the Infinitesimal Hilbert Sixteenth Problem

    Full text link
    We prove that the number of limit cycles generated by a small non-conservative perturbation of a Hamiltonian polynomial vector field on the plane, is bounded by a double exponential of the degree of the fields. This solves the long-standing tangential Hilbert 16th problem. The proof uses only the fact that Abelian integrals of a given degree are horizontal sections of a regular flat meromorphic connection (Gauss-Manin connection) with a quasiunipotent monodromy group.Comment: Final revisio

    HNN Extensions of von Neumann Algebras

    Get PDF
    Reduced HNN extensions of von Neumann algebras (as well as CC^*-algebras) will be introduced, and their modular theory, factoriality and ultraproducts will be discussed. In several concrete settings, detailed analysis on them will be also carried out.Comment: Slightly revised versio

    The ergodic theory of hyperbolic groups

    Get PDF
    These notes are a self-contained introduction to the use of dynamical and probabilistic methods in the study of hyperbolic groups. Most of this material is standard; however some of the proofs given are new, and some results are proved in greater generality than have appeared in the literature. These notes originated in a minicourse given at a workshop in Melbourne, July 11-15 2011.Comment: 37 pages, 5 figures; incorporates referee's comment

    Reproducing kernel Hilbert space compactification of unitary evolution groups

    Get PDF
    A framework for coherent pattern extraction and prediction of observables of measure-preserving, ergodic dynamical systems with both atomic and continuous spectral components is developed. This framework is based on an approximation of the generator of the system by a compact operator W-tau on a reproducing kernel Hilbert space (RKHS). The operator W-tau is skew-adjoint, and thus can be represented by a projection-valued measure, discrete by compactness, with an associated orthonormal basis of eigenfunctions. These eigenfunctions are ordered in terms of a Dirichlet energy, and provide a notion of coherent observables under the dynamics akin to the Koopman eigenfunctions associated with the atomic part of the spectrum. In addition, W-tau generates a unitary evolution group {e(tW tau)}t epsilon R on the RKHS, which approximates the unitary Koopman group of the system. We establish convergence results for the spectrum and Borel functional calculus of W-tau as tau -> 0(+), as well as an associated data-driven formulation utilizing time series data. Numerical applications to ergodic systems with atomic and continuous spectra, namely a torus rotation, the Lorenz 63 system, and the Rossler system, are presented. (C) 2021 The Author(s). Published by Elsevier Inc.Peer reviewe

    Renormalization analysis of catalytic Wright-Fisher diffusions

    Get PDF
    Recently, several authors have studied maps where a function, describing the local diffusion matrix of a diffusion process with a linear drift towards an attraction point, is mapped into the average of that function with respect to the unique invariant measure of the diffusion process, as a function of the attraction point. Such mappings arise in the analysis of infinite systems of diffusions indexed by the hierarchical group, with a linear attractive interaction between the components. In this context, the mappings are called renormalization transformations. We consider such maps for catalytic Wright-Fisher diffusions. These are diffusions on the unit square where the first component (the catalyst) performs an autonomous Wright-Fisher diffusion, while the second component (the reactant) performs a Wright-Fisher diffusion with a rate depending on the first component through a catalyzing function. We determine the limit of rescaled iterates of renormalization transformations acting on the diffusion matrices of such catalytic Wright-Fisher diffusions.Comment: 65 pages, 3 figure
    corecore