12 research outputs found

    Encounter gossip: a high coverage broadcast protocol for MANET

    Get PDF
    PhD ThesisMobile Ad-hoc Networks (MANETs) allow deployment of mobile wireless devices or nodes in a range of environments without any fixed infrastructure and hence at a minimal setup cost. Broadcast support that assures a high coverage (i.e., a large fraction of nodes receiving a broadcast) is essential for hosting user applications, and is also non-trivial to achieve due to the nature of devices and mobility. We propose Encounter Gossip, a novel broadcast protocol, which holds minimal state and is unaware of network topology. Coverage obtained can be made arbitrarily close to 1 at a moderate cost of extra message tra c, even in partition-prone networks. Under certain simplifying assumptions, it is shown that a high coverage is achieved by making a total of O(n ln n) broadcasts, where n is the number of nodes, and the time to propagate a message is O(ln n). The e ect of various network parameters on the protocol performance is examined. We then propose modifications to minimise the number of redundant transmissions without compromising the achieved coverage. Two approaches are pursued: timer based and history based. The e ectiveness of each of these approaches is assessed through an extensive set of simulation experiments in the context of two mobility models. Specifically, we introduce a new heuristic alpha policy which achieves significant reduction in redundancy with negligible reduction in coverage. A generalisation to multiple broadcasts proceeding in parallel is proposed and the protocol is refined to reduce problems that can occur due to the effects of high mobility when transmitting a large number of messages. Finally, we implement and validate Encounter Gossip in the context of a real-life mobile ad-hoc network. All these investigations suggest that the protocol, together with the proposed modifications and re nements, is suited to MANETs of varying degrees of node densities and speeds

    An adaptive approach for optimized opportunistic routing over Delay Tolerant Mobile Ad hoc Networks

    Get PDF
    This thesis presents a framework for investigating opportunistic routing in Delay Tolerant Mobile Ad hoc Networks (DTMANETs), and introduces the concept of an Opportunistic Confidence Index (OCI). The OCI enables multiple opportunistic routing protocols to be applied as an adaptive group to improve DTMANET routing reliability, performance, and efficiency. The DTMANET is a recently acknowledged networkarchitecture, which is designed to address the challenging and marginal environments created by adaptive, mobile, and unreliable network node presence. Because of its ad hoc and autonomic nature, routing in a DTMANET is a very challenging problem. The design of routing protocols in such environments, which ensure a high percentage delivery rate (reliability), achieve a reasonable delivery time (performance), and at the same time maintain an acceptable communication overhead (efficiency), is of fundamental consequence to the usefulness of DTMANETs. In recent years, a number of investigations into DTMANET routing have been conducted, resulting in the emergence of a class of routing known as opportunistic routing protocols. Current research into opportunistic routing has exposed opportunities for positive impacts on DTMANET routing. To date, most investigations have concentrated upon one or other of the quality metrics of reliability, performance, or efficiency, while some approaches have pursued a balance of these metrics through assumptions of a high level of global knowledge and/or uniform mobile device behaviours. No prior research that we are aware of has studied the connection between multiple opportunistic elements and their influences upon one another, and none has demonstrated the possibility of modelling and using multiple different opportunistic elements as an adaptive group to aid the routing process in a DTMANET. This thesis investigates OCI opportunities and their viability through the design of an extensible simulation environment, which makes use of methods and techniques such as abstract modelling, opportunistic element simplification and isolation, random attribute generation and assignment, localized knowledge sharing, automated scenario generation, intelligent weight assignment and/or opportunistic element permutation. These methods and techniques are incorporated at both data acquisition and analysis phases. Our results show a significant improvement in all three metric categories. In one of the most applicable scenarios tested, OCI yielded a 31.05% message delivery increase (reliability improvement), 22.18% message delivery time reduction (performance improvement), and 73.64% routing depth decrement (efficiency improvement). We are able to conclude that the OCI approach is feasible across a range of scenarios, and that the use of multiple opportunistic elements to aid decision-making processes in DTMANET environments has value

    Conception d’un support de communication opportuniste pour les services pervasifs

    Get PDF
    The vision of pervasive computing of building interactive smart spaces in the physical environment is gradually heading from the research domain to reality. Computing capacity is moving beyond personal computers to many day-to-day devices, and these devices become, thanks to multiple interfaces, capable of communicating directly with one another or of connecting to the Internet.In this thesis, we are interested in a kind of pervasive computing environment that forms what we call an Intermittently Connected Hybrid Network (ICHN). An ICHN is a network composed of two parts: a fixed and a mobile part. The fixed part is formed of some fixed infostations (potentially connected together with some fixed infrastructure, typically the Internet). The mobile part, on the other hand, is formed of smartphones carried by nomadic people. While the fixed part is mainly stable, the mobile part is considered challenging and form what is called an Opportunistic Network. Indeed, relying on short-range communication means coupled with the free movements of people and radio interferences lead to frequent disconnections. To perform a network-wide communication, the "store, carry and forward" approach is usually applied. With this approach, a message can be stored temporarily on a device, in order to be forwarded later when circumstances permit. Any device can opportunistically be used as an intermediate relay to facilitate the propagation of a message from one part of the network to another. In this context, the provisioning of pervasive services is particularly challenging, and requires revisiting important components of the provisioning process, such as performing pervasive service discovery and invocation with the presence of connectivity disruptions and absence of both end-to-end paths and access continuity due to user mobility. This thesis addresses the problems of providing network-wide service provisioning in ICHNs and proposes solutions for pervasive service discovery, invocation and access continuity. Concerning service discovery challenge, we propose TAO-DIS, a service discovery protocol that performs an automatic and fast service discovery mechanism. TAO-DIS takes into account the hybrid nature of an ICHN and that the majority of services are provided by infostations. It permits mobile users to discover all the services in the surrounding environment in order to identify and choose the most convenient ones. To allow users to interact with the discovered services, we introduce TAO-INV. TAO-INV is a service invocation protocol specifically designed for ICHNs. It relies on a set of heuristics and mechanisms that ensures performing efficient routing of messages (both service requests and responses) between fixed infostations and mobile clients while preserving both low values of overhead and round trip delays. Since some infostations in the network might be connected, we propose a soft handover mechanism that modifies the invocation process in order to reduce service delivery delays. This handover mechanism takes into consideration the opportunistic nature of the mobile part of the ICHN. We have performed various experiments to evaluate our solutions and compare them with other protocols designed for ad hoc and opportunistic networks. The obtained results tend to prove that our solutions outperform these protocols, namely thanks to the optimizations we have developed for ICHNs. In our opinion, building specialized protocols that benefit from techniques specifically designed for ICHNs is an approach that should be pursued, in complement with research works on general-purpose communication protocolsLa vision de l'informatique ubiquitaire permettant de construire des espaces intelligents interactifs dans l'environnement physique passe, peu Ă  peu, du domaine de la recherche Ă  la rĂ©alitĂ©. La capacitĂ© de calcul ne se limite plus Ă  l'ordinateur personnel mais s'intĂšgre dans de multiples appareils du quotidien, et ces appareils deviennent, grĂące Ă  plusieurs interfaces, capables de communiquer directement les uns avec les autres ou bien de se connecter Ă  Internet.Dans cette thĂšse, nous nous sommes intĂ©ressĂ©s Ă  un type d'environnement cible de l'informatique ubiquitaire qui forme ce que nous appelons un rĂ©seau hybride Ă  connexions intermittentes (ICHN). Un ICHN est un rĂ©seau composĂ© de deux parties : une partie fixe et une partie mobile. La partie fixe est constituĂ©e de plusieurs infostations fixes (potentiellement reliĂ©es entre elles avec une infrastructure fixe, typiquement l'Internet). La partie mobile, quant Ă  elle, est constituĂ©e de smartphones portĂ©s par des personnes nomades. Tandis que la partie fixe est principalement stable, la partie mobile pose un certain nombre de dĂ©fis propres aux rĂ©seaux opportunistes. En effet, l'utilisation de moyens de communication Ă  courte portĂ©e couplĂ©e Ă  des dĂ©placements de personnes non contraints et Ă  des interfĂ©rences radio induit des dĂ©connexions frĂ©quentes. Le concept du "store, carry and forward" est alors habituellement appliquĂ© pour permettre la communication sur l'ensemble du rĂ©seau. Avec cette approche, un message peut ĂȘtre stockĂ© temporairement sur un appareil avant d'ĂȘtre transfĂ©rĂ© plus tard quand les circonstances sont plus favorables. Ainsi, n'importe quel appareil devient un relai de transmission opportuniste qui permet de faciliter la propagation d'un message dans le rĂ©seau. Dans ce contexte, la fourniture de services est particuliĂšrement problĂ©matique, et exige de revisiter les composants principaux du processus de fourniture, tels que la dĂ©couverte et l'invocation de service, en prĂ©sence de ruptures de connectivitĂ© et en l'absence de chemins de bout en bout. Cette thĂšse aborde les problĂšmes de fourniture de service sur l'ensemble d'un ICHN et propose des solutions pour la dĂ©couverte de services, l'invocation et la continuitĂ© d'accĂšs. En ce qui concerne le dĂ©fi de la dĂ©couverte de services, nous proposons TAO-DIS, un protocole qui met en Ɠuvre un mĂ©canisme automatique et rapide de dĂ©couverte de services. TAO-DIS tient compte de la nature hybride d'un ICHN et du fait que la majoritĂ© des services sont fournis par des infostations. Il permet aux utilisateurs mobiles de dĂ©couvrir tous les services dans l'environnement afin d'identifier et de choisir les plus intĂ©ressants. Pour permettre aux utilisateurs d'interagir avec les services dĂ©couverts, nous introduisons TAO-INV. TAO-INV est un protocole d'invocation de service spĂ©cialement conçu pour les ICHN. Il se fonde sur un ensemble d'heuristiques et de mĂ©canismes qui assurent un acheminement efficace des messages (des requĂȘtes et des rĂ©ponses de services) entre les infostations fixes et les clients mobiles tout en conservant un surcoĂ»t et des temps de rĂ©ponses rĂ©duits. Puisque certaines infostations dans le rĂ©seau peuvent ĂȘtre reliĂ©es entre elles, nous proposons un mĂ©canisme de continuitĂ© d'accĂšs (handover) qui modifie le processus d'invocation pour rĂ©duire les dĂ©lais de dĂ©livrance. Dans sa dĂ©finition, il est tenu compte de la nature opportuniste de la partie mobile de l'ICHN. Nous avons menĂ© diverses expĂ©rimentations pour Ă©valuer nos solutions et les comparer Ă  d'autres protocoles conçus pour des rĂ©seaux ad hoc et des rĂ©seaux opportunistes. Les rĂ©sultats obtenus tendent Ă  montrer que nos solutions surpassent ces autres protocoles, notamment grĂące aux optimisations que nous avons dĂ©veloppĂ©es pour les ICHN. À notre avis, construire des protocoles spĂ©cialisĂ©s qui tirent parti des techniques spĂ©cifiquement conçues pour les ICHN est une approche Ă  poursuivre en complĂ©ment des recherches sur des protocoles de communication polyvalent

    Efficient service discovery in wide area networks

    Get PDF
    Living in an increasingly networked world, with an abundant number of services available to consumers, the consumer electronics market is enjoying a boom. The average consumer in the developed world may own several networked devices such as games consoles, mobile phones, PDAs, laptops and desktops, wireless picture frames and printers to name but a few. With this growing number of networked devices comes a growing demand for services, defined here as functions requested by a client and provided by a networked node. For example, a client may wish to download and share music or pictures, find and use printer services, or lookup information (e.g. train times, cinema bookings). It is notable that a significant proportion of networked devices are now mobile. Mobile devices introduce a new dynamic to the service discovery problem, such as lower battery and processing power and more expensive bandwidth. Device owners expect to access services not only in their immediate proximity, but further afield (e.g. in their homes and offices). Solving these problems is the focus of this research. This Thesis offers two alternative approaches to service discovery in Wide Area Networks (WANs). Firstly, a unique combination of the Session Initiation Protocol (SIP) and the OSGi middleware technology is presented to provide both mobility and service discovery capability in WANs. Through experimentation, this technique is shown to be successful where the number of operating domains is small, but it does not scale well. To address the issue of scalability, this Thesis proposes the use of Peer-to-Peer (P2P) service overlays as a medium for service discovery in WANs. To confirm that P2P overlays can in fact support service discovery, a technique to utilise the Distributed Hash Table (DHT) functionality of distributed systems is used to store and retrieve service advertisements. Through simulation, this is shown to be both a scalable and a flexible service discovery technique. However, the problems associated with P2P networks with respect to efficiency are well documented. In a novel approach to reduce messaging costs in P2P networks, multi-destination multicast is used. Two well known P2P overlays are extended using the Explicit Multi-Unicast (XCAST) protocol. The resulting analysis of this extension provides a strong argument for multiple P2P maintenance algorithms co-existing in a single P2P overlay to provide adaptable performance. A novel multi-tier P2P overlay system is presented, which is tailored for service rich mobile devices and which provides an efficient platform for service discovery

    Predicting the Outcomes of Important Events based on Social Media and Social Network Analysis

    Get PDF
    Twitter is a famous social network website that lets users post their opinions about current affairs, share their social events, and interact with others. It has now become one of the largest sources of news, with over 200 million active users monthly. It is possible to predict the outcomes of events based on social networks using machine learning and big data analytics. Massive data available from social networks can be utilized to improve prediction efficacy and accuracy. It is a challenging problem to achieve high accuracy in predicting the outcomes of political events using Twitter data. The focus of this thesis is to investigate novel approaches to predicting the outcomes of political events from social media and social networks. The first proposed method is to predict election results based on Twitter data analysis. The method extracts and analyses sentimental information from microblogs to predict the popularity of candidates. Experimental results have shown its advantages over the existing method for predicting outcomes of politic events. The second proposed method is to predict election results based on Twitter data analysis that analyses sentimental information using term weighting and selection to predict the popularity of candidates. Scaling factors are used for different types of terms, which help to select informative terms more effectively and achieve better prediction results than the previous method. The third method proposed in this thesis represents the social network by using network connectivity constructed based on retweet data and social media contents as well, leading to a new approach to predicting the outcome of political events. Two approaches, whole-network and sub-network, have been developed and compared. Experimental results show that the sub-network approach, which constructs sub-networks based on different topics, outperformed the whole-network approach

    Collaboration in Opportunistic Networks

    Get PDF
    Motivation. With the increasing integration of wireless short-range communication technologies (Bluetooth, 802.11b WiFi) into mobile devices, novel applications for spontaneous communication, interaction and collaboration are possible. We distinguish between active and passive collaboration. The devices help users become aware of each other and stimulate face-to-face conversation (active collaboration). Also, autonomous device communication for sharing information without user interaction is possible, i.e., devices pass information to other devices in their vicinity (passive collaboration). Both, active and passive collaboration requires a user to specify what kind of information he offers and what kind of information he is interested in. Object of Research: Opportunistic Networks. Spontaneous communication of mobile devices leads to so-called opportunistic networks, a new and promising evolution in mobile ad-hoc networking. They are formed by mobile devices which communicate with each other while users are in close proximity. There are two prominent characteristics present in opportunistic networks: 1) A user provides his personal device as a network node. 2) Users are a priori unknown to each other. Objectives. Due to the fact that a user dedicates his personal device as a node to the opportunistic network and interacts with other users unknown to him, collaboration raises questions concerning two important human aspects: user privacy and incentives. The users’ privacy is at risk, since passive collaboration applications may expose personal information about a user. Furthermore, some form of incentive is needed to encourage a user to share his personal device resources with others. Both issues, user privacy and incentives, need to be taken into account in order to increase the user acceptability of opportunistic network applications. These aspects have not been addressed together with the technical tasks in prior opportunistic network research. Scientific Contribution and Evaluation. This thesis investigates opportunistic networks in their entirety, i.e., our technical design decisions are appropriate for user privacy preservation and incentive schemes. In summary, the proposed concepts comprise system components, a node architecture, a system model and a simple one-hop communication paradigm for opportunistic network applications. One focus of this work is a profile-based data dissemination mechanism. A formal model for this mechanism will be presented. On top of that, we show how to preserve the privacy of a user by avoiding static and thus linkable data and an incentive scheme that is suitable for opportunistic network applications. The evaluation of this work is twofold. We implemented two prototypes on off-the-shelf hardware to show the technical feasibility of our opportunistic network concepts. Also, the prototypes were used to carry out a number of runtime measurements. Then, we developed a novel two-step simulation method for opportunistic data dissemination. The simulation combines real world user traces with artificial user mobility models, in order to model user movements more realistically. We investigate our opportunistic data dissemination process under various settings, including different communication ranges and user behavior patterns. Our results depict, within the limits of our model and assumptions, a good performance of the data dissemination process

    Design of a Recommender System for Participatory Media Built on a Tetherless Communication Infrastructure

    Get PDF
    We address the challenge of providing low-cost, universal access of useful information to people in different parts of the globe. We achieve this by following two strategies. First, we focus on the delivery of information through computerized devices and prototype new methods for making that delivery possible in a secure, low-cost, and universal manner. Second, we focus on the use of participatory media, such as blogs, in the context of news related content, and develop methods to recommend useful information that will be of interest to users. To achieve the first goal, we have designed a low-cost wireless system for Internet access in rural areas, and a smartphone-based system for the opportunistic use of WiFi connectivity to reduce the cost of data transfer on multi-NIC mobile devices. Included is a methodology for secure communication using identity based cryptography. For the second goal of identifying useful information, we make use of sociological theories regarding social networks in mass-media to develop a model of how participatory media can offer users effective news-related information. We then use this model to design a recommender system for participatory media content that pushes useful information to people in a personalized fashion. Our algorithms provide an order of magnitude better performance in terms of recommendation accuracy than other state-of-the-art recommender systems. Our work provides some fundamental insights into the design of low-cost communication systems and the provision of useful messages to users in participatory media through a multi-disciplinary approach. The result is a framework that efficiently and effectively delivers information to people in remote corners of the world

    Private and censorship-resistant communication over public networks

    Get PDF
    Society’s increasing reliance on digital communication networks is creating unprecedented opportunities for wholesale surveillance and censorship. This thesis investigates the use of public networks such as the Internet to build robust, private communication systems that can resist monitoring and attacks by powerful adversaries such as national governments. We sketch the design of a censorship-resistant communication system based on peer-to-peer Internet overlays in which the participants only communicate directly with people they know and trust. This ‘friend-to-friend’ approach protects the participants’ privacy, but it also presents two significant challenges. The first is that, as with any peer-to-peer overlay, the users of the system must collectively provide the resources necessary for its operation; some users might prefer to use the system without contributing resources equal to those they consume, and if many users do so, the system may not be able to survive. To address this challenge we present a new game theoretic model of the problem of encouraging cooperation between selfish actors under conditions of scarcity, and develop a strategy for the game that provides rational incentives for cooperation under a wide range of conditions. The second challenge is that the structure of a friend-to-friend overlay may reveal the users’ social relationships to an adversary monitoring the underlying network. To conceal their sensitive relationships from the adversary, the users must be able to communicate indirectly across the overlay in a way that resists monitoring and attacks by other participants. We address this second challenge by developing two new routing protocols that robustly deliver messages across networks with unknown topologies, without revealing the identities of the communication endpoints to intermediate nodes or vice versa. The protocols make use of a novel unforgeable acknowledgement mechanism that proves that a message has been delivered without identifying the source or destination of the message or the path by which it was delivered. One of the routing protocols is shown to be robust to attacks by malicious participants, while the other provides rational incentives for selfish participants to cooperate in forwarding messages

    Towards a Usenet-Like Discussion System for Users of Disconnected MANETs

    No full text
    corecore