50,260 research outputs found

    Towards a theory of declarative knowledge

    Get PDF

    Instructional strategies and tactics for the design of introductory computer programming courses in high school

    Get PDF
    This article offers an examination of instructional strategies and tactics for the design of introductory computer programming courses in high school. We distinguish the Expert, Spiral and Reading approach as groups of instructional strategies that mainly differ in their general design plan to control students' processing load. In order, they emphasize topdown program design, incremental learning, and program modification and amplification. In contrast, tactics are specific design plans that prescribe methods to reach desired learning outcomes under given circumstances. Based on ACT* (Anderson, 1983) and relevant research, we distinguish between declarative and procedural instruction and present six tactics which can be used both to design courses and to evaluate strategies. Three tactics for declarative instruction involve concrete computer models, programming plans and design diagrams; three tactics for procedural instruction involve worked-out examples, practice of basic cognitive skills and task variation. In our evaluation of groups of instructional strategies, the Reading approach has been found to be superior to the Expert and Spiral approaches

    The Future Evolution of Consciousness

    Get PDF
    ABSTRACT. What potential exists for improvements in the functioning of consciousness? The paper addresses this issue using global workspace theory. According to this model, the prime function of consciousness is to develop novel adaptive responses. Consciousness does this by putting together new combinations of knowledge, skills and other disparate resources that are recruited from throughout the brain. The paper’s search for potential improvements in the functioning of consciousness draws on studies of the shift during human development from the use of implicit knowledge to the use of explicit (declarative) knowledge. These studies show that the ability of consciousness to adapt a particular domain improves significantly as the transition to the use of declarative knowledge occurs in that domain. However, this potential for consciousness to enhance adaptability has not yet been realised to any extent in relation to consciousness itself. The paper assesses the potential for adaptability to be improved by the conscious adaptation of key processes that constitute consciousness. A number of sources (including the practices of religious and contemplative traditions) are drawn on to investigate how this potential might be realised

    Layers in the Fabric of Mind: A Critical Review of Cognitive Ontogeny

    Get PDF
    The essay is critically examines the conceptual problems with the influential modularity model of mind. We shall see that one of the essential characters of modules, namely informational encapsulation, is not only inessential, it ties a knot at a crucial place blocking the solution to the problem of understanding the formation of concepts from percepts (nodes of procedural knowledge). Subsequently I propose that concept formation takes place by modulation of modules leading to cross-representations, which were otherwise prevented by encapsulation. It must be noted that the argument is not against modular architecture, but a variety of an architecture that prevents interaction among modules. This is followed by a brief argument demonstrating that module without modularization, i.e. without developmental history, is impossible. Finally the emerging picture of cognitive development is drawn in the form of the layers in the fabric of mind, with a brief statement of the possible implications

    A tool-mediated cognitive apprenticeship approach for a computer engineering course

    Get PDF
    Teaching database engineers involves a variety of learning activities. A strong focus is on practical problems that go beyond the acquisition of knowledge. Skills and experience are equally important. We propose a virtual apprenticeship model for the knowledge- and skillsoriented Web-based education of database students. We adapt the classical cognitive apprenticeship theory to the Web context utilising scaffolding and activity theory. The choice of educational media and the forms of student interaction with the media are central success criteria

    Evaluation of Cognitive Architectures for Cyber-Physical Production Systems

    Full text link
    Cyber-physical production systems (CPPS) integrate physical and computational resources due to increasingly available sensors and processing power. This enables the usage of data, to create additional benefit, such as condition monitoring or optimization. These capabilities can lead to cognition, such that the system is able to adapt independently to changing circumstances by learning from additional sensors information. Developing a reference architecture for the design of CPPS and standardization of machines and software interfaces is crucial to enable compatibility of data usage between different machine models and vendors. This paper analysis existing reference architecture regarding their cognitive abilities, based on requirements that are derived from three different use cases. The results from the evaluation of the reference architectures, which include two instances that stem from the field of cognitive science, reveal a gap in the applicability of the architectures regarding the generalizability and the level of abstraction. While reference architectures from the field of automation are suitable to address use case specific requirements, and do not address the general requirements, especially w.r.t. adaptability, the examples from the field of cognitive science are well usable to reach a high level of adaption and cognition. It is desirable to merge advantages of both classes of architectures to address challenges in the field of CPPS in Industrie 4.0

    The KB paradigm and its application to interactive configuration

    Full text link
    The knowledge base paradigm aims to express domain knowledge in a rich formal language, and to use this domain knowledge as a knowledge base to solve various problems and tasks that arise in the domain by applying multiple forms of inference. As such, the paradigm applies a strict separation of concerns between information and problem solving. In this paper, we analyze the principles and feasibility of the knowledge base paradigm in the context of an important class of applications: interactive configuration problems. In interactive configuration problems, a configuration of interrelated objects under constraints is searched, where the system assists the user in reaching an intended configuration. It is widely recognized in industry that good software solutions for these problems are very difficult to develop. We investigate such problems from the perspective of the KB paradigm. We show that multiple functionalities in this domain can be achieved by applying different forms of logical inferences on a formal specification of the configuration domain. We report on a proof of concept of this approach in a real-life application with a banking company. To appear in Theory and Practice of Logic Programming (TPLP).Comment: To appear in Theory and Practice of Logic Programming (TPLP

    Towards an Intelligent Tutor for Mathematical Proofs

    Get PDF
    Computer-supported learning is an increasingly important form of study since it allows for independent learning and individualized instruction. In this paper, we discuss a novel approach to developing an intelligent tutoring system for teaching textbook-style mathematical proofs. We characterize the particularities of the domain and discuss common ITS design models. Our approach is motivated by phenomena found in a corpus of tutorial dialogs that were collected in a Wizard-of-Oz experiment. We show how an intelligent tutor for textbook-style mathematical proofs can be built on top of an adapted assertion-level proof assistant by reusing representations and proof search strategies originally developed for automated and interactive theorem proving. The resulting prototype was successfully evaluated on a corpus of tutorial dialogs and yields good results.Comment: In Proceedings THedu'11, arXiv:1202.453

    Making mentoring work: The need for rewiring epistemology

    Get PDF
    To help produce expert coaches at both participation and performance levels, a number of governing bodies have established coach mentoring systems. In light of the limited literature on coach mentoring, as well as the risks of superficial treatment by coach education systems, this paper therefore critically discusses the role of the mentor in coach development, the nature of the mentor-mentee relationship and, most specifically, how expertise in the mentee may best be developed. If mentors are to be effective in developing expert coaches then we consequently argue that a focus on personal epistemology is required. On this basis, we present a framework that conceptualizes mentee development on this level through a step by step progression, rather than unrealistic and unachievable leap toward expertise. Finally, we consider the resulting implications for practice and research with respect to one-on-one mentoring, communities of practice, and formal coach education
    corecore