10,179 research outputs found

    Between Sense and Sensibility: Declarative narrativisation of mental models as a basis and benchmark for visuo-spatial cognition and computation focussed collaborative cognitive systems

    Full text link
    What lies between `\emph{sensing}' and `\emph{sensibility}'? In other words, what kind of cognitive processes mediate sensing capability, and the formation of sensible impressions ---e.g., abstractions, analogies, hypotheses and theory formation, beliefs and their revision, argument formation--- in domain-specific problem solving, or in regular activities of everyday living, working and simply going around in the environment? How can knowledge and reasoning about such capabilities, as exhibited by humans in particular problem contexts, be used as a model and benchmark for the development of collaborative cognitive (interaction) systems concerned with human assistance, assurance, and empowerment? We pose these questions in the context of a range of assistive technologies concerned with \emph{visuo-spatial perception and cognition} tasks encompassing aspects such as commonsense, creativity, and the application of specialist domain knowledge and problem-solving thought processes. Assistive technologies being considered include: (a) human activity interpretation; (b) high-level cognitive rovotics; (c) people-centred creative design in domains such as architecture & digital media creation, and (d) qualitative analyses geographic information systems. Computational narratives not only provide a rich cognitive basis, but they also serve as a benchmark of functional performance in our development of computational cognitive assistance systems. We posit that computational narrativisation pertaining to space, actions, and change provides a useful model of \emph{visual} and \emph{spatio-temporal thinking} within a wide-range of problem-solving tasks and application areas where collaborative cognitive systems could serve an assistive and empowering function.Comment: 5 pages, research statement summarising recent publication

    Answer Set Programming Modulo `Space-Time'

    Full text link
    We present ASP Modulo `Space-Time', a declarative representational and computational framework to perform commonsense reasoning about regions with both spatial and temporal components. Supported are capabilities for mixed qualitative-quantitative reasoning, consistency checking, and inferring compositions of space-time relations; these capabilities combine and synergise for applications in a range of AI application areas where the processing and interpretation of spatio-temporal data is crucial. The framework and resulting system is the only general KR-based method for declaratively reasoning about the dynamics of `space-time' regions as first-class objects. We present an empirical evaluation (with scalability and robustness results), and include diverse application examples involving interpretation and control tasks

    KR3^3: An Architecture for Knowledge Representation and Reasoning in Robotics

    Get PDF
    This paper describes an architecture that combines the complementary strengths of declarative programming and probabilistic graphical models to enable robots to represent, reason with, and learn from, qualitative and quantitative descriptions of uncertainty and knowledge. An action language is used for the low-level (LL) and high-level (HL) system descriptions in the architecture, and the definition of recorded histories in the HL is expanded to allow prioritized defaults. For any given goal, tentative plans created in the HL using default knowledge and commonsense reasoning are implemented in the LL using probabilistic algorithms, with the corresponding observations used to update the HL history. Tight coupling between the two levels enables automatic selection of relevant variables and generation of suitable action policies in the LL for each HL action, and supports reasoning with violation of defaults, noisy observations and unreliable actions in large and complex domains. The architecture is evaluated in simulation and on physical robots transporting objects in indoor domains; the benefit on robots is a reduction in task execution time of 39% compared with a purely probabilistic, but still hierarchical, approach.Comment: The paper appears in the Proceedings of the 15th International Workshop on Non-Monotonic Reasoning (NMR 2014
    • …
    corecore