2,100 research outputs found

    Exploring Maintainability Assurance Research for Service- and Microservice-Based Systems: Directions and Differences

    Get PDF
    To ensure sustainable software maintenance and evolution, a diverse set of activities and concepts like metrics, change impact analysis, or antipattern detection can be used. Special maintainability assurance techniques have been proposed for service- and microservice-based systems, but it is difficult to get a comprehensive overview of this publication landscape. We therefore conducted a systematic literature review (SLR) to collect and categorize maintainability assurance approaches for service-oriented architecture (SOA) and microservices. Our search strategy led to the selection of 223 primary studies from 2007 to 2018 which we categorized with a threefold taxonomy: a) architectural (SOA, microservices, both), b) methodical (method or contribution of the study), and c) thematic (maintainability assurance subfield). We discuss the distribution among these categories and present different research directions as well as exemplary studies per thematic category. The primary finding of our SLR is that, while very few approaches have been suggested for microservices so far (24 of 223, ?11%), we identified several thematic categories where existing SOA techniques could be adapted for the maintainability assurance of microservices

    From a Domain Analysis to the Specification and Detection of Code and Design Smells

    Get PDF
    Code and design smells are recurring design problems in software systems that must be identified to avoid their possible negative consequences\ud on development and maintenance. Consequently, several smell detection\ud approaches and tools have been proposed in the literature. However,\ud so far, they allow the detection of predefined smells but the detection\ud of new smells or smells adapted to the context of the analysed systems\ud is possible only by implementing new detection algorithms manually.\ud Moreover, previous approaches do not explain the transition from\ud specifications of smells to their detection. Finally, the validation\ud of the existing approaches and tools has been limited on few proprietary\ud systems and on a reduced number of smells. In this paper, we introduce\ud an approach to automate the generation of detection algorithms from\ud specifications written using a domain-specific language. This language\ud is defined from a thorough domain analysis. It allows the specification\ud of smells using high-level domain-related abstractions. It allows\ud the adaptation of the specifications of smells to the context of\ud the analysed systems.We specify 10 smells, generate automatically\ud their detection algorithms using templates, and validate the algorithms\ud in terms of precision and recall on Xerces v2.7.0 and GanttProject\ud v1.10.2, two open-source object-oriented systems.We also compare\ud the detection results with those of a previous approach, iPlasma

    A Domain Analysis to Specify Design Defects and Generate Detection Algorithms

    Get PDF
    Quality experts often need to identify in software systems design defects, which are recurring design problems, that hinder development\ud and maintenance. Consequently, several defect detection approaches\ud and tools have been proposed in the literature. However, we are not\ud aware of any approach that defines and reifies the process of generating\ud detection algorithms from the existing textual descriptions of defects.\ud In this paper, we introduce an approach to automate the generation\ud of detection algorithms from specifications written using a domain-specific\ud language. The domain-specific is defined from a thorough domain analysis.\ud We specify several design defects, generate automatically detection\ud algorithms using templates, and validate the generated detection\ud algorithms in terms of precision and recall on Xerces v2.7.0, an\ud open-source object-oriented system

    Towards a catalog of spreadsheet smells

    Get PDF
    Spreadsheets are considered to be the most widely used programming language in the world, and reports have shown that 90% of real-world spreadsheets contain errors. In this work, we try to identify spreadsheet smells, a concept adapted from software, which consists of a surface indication that usually corresponds to a deeper problem. Our smells have been integrated in a tool, and were computed for a large spreadsheet repository. Finally, the analysis of the results we obtained led to the refinement of our initial catalog

    Serious Refactoring Games

    Get PDF
    Software design issues can severely impede software development and maintenance. Thus, it is important for the success of software projects that developers are aware of bad smells in code artifacts and improve their skills to reduce these issues via refactoring. However, software refactoring is a complex activity and involves multiple tasks and aspects. Therefore, imparting competences for identifying bad smells and refactoring code efficiently is challenging for software engineering education and training. The approaches proposed for teaching software refactoring in recent years mostly concentrate on small and artificial tasks and fall short in terms of higher level competences, such as analysis and evaluation. In this paper, we investigate the possibilities and challenges of designing serious games for software refactoring on real-world code artifacts. In particular, we propose a game design, where students can compete either against a predefined benchmark (technical debt) or against each other. In addition, we describe a lightweight architecture as the technical foundation for the game design that integrates pre-existing analysis tools such as test frameworks and software-quality analyzers. Finally, we provide an exemplary game scenario to illustrate the application of serious games in a learning setting

    Smelly Maps: The Digital Life of Urban Smellscapes

    Full text link
    Smell has a huge influence over how we perceive places. Despite its importance, smell has been crucially overlooked by urban planners and scientists alike, not least because it is difficult to record and analyze at scale. One of the authors of this paper has ventured out in the urban world and conducted smellwalks in a variety of cities: participants were exposed to a range of different smellscapes and asked to record their experiences. As a result, smell-related words have been collected and classified, creating the first dictionary for urban smell. Here we explore the possibility of using social media data to reliably map the smells of entire cities. To this end, for both Barcelona and London, we collect geo-referenced picture tags from Flickr and Instagram, and geo-referenced tweets from Twitter. We match those tags and tweets with the words in the smell dictionary. We find that smell-related words are best classified in ten categories. We also find that specific categories (e.g., industry, transport, cleaning) correlate with governmental air quality indicators, adding validity to our study.Comment: 11 pages, 7 figures, Proceedings of 9th International AAAI Conference on Web and Social Media (ICWSM2015

    Law Smells - Defining and Detecting Problematic Patterns in Legal Drafting

    Get PDF

    Detection of microservice smells through static analysis

    Get PDF
    A arquitetura de microsserviços é um modelo arquitetural promissor na área de software, atraindo desenvolvedores e empresas para os seus princípios convincentes. As suas vantagens residem no potencial para melhorar a escalabilidade, a flexibilidade e a agilidade, alinhando se com as exigências em constante evolução da era digital. No entanto, navegar entre as complexidades dos microsserviços pode ser uma tarefa desafiante, especialmente à medida que este campo continua a evoluir. Um dos principais desafios advém da complexidade inerente aos microsserviços, em que o seu grande número e interdependências podem introduzir novas camadas de complexidade. Além disso, a rápida expansão dos microsserviços, juntamente com a necessidade de aproveitar as suas vantagens de forma eficaz, exige uma compreensão mais profunda das potenciais ameaças e problemas que podem surgir. Para tirar verdadeiramente partido das vantagens dos microsserviços, é essencial enfrentar estes desafios e garantir que o desenvolvimento e a adoção de microsserviços sejam bem-sucedidos. O presente documento pretende explorar a área dos smells da arquitetura de microsserviços que desempenham um papel tão importante na dívida técnica dirigida à área dos microsserviços. Embarca numa exploração de investigação abrangente, explorando o domínio dos smells de microsserviços. Esta investigação serve como base para melhorar um catálogo de smells de microsserviços. Esta investigação abrangente obtém dados de duas fontes primárias: systematic mapping study e um questionário a profissionais da área. Este último envolveu 31 profissionais experientes com uma experiência substancial no domínio dos microsserviços. Além disso, são descritos o desenvolvimento e o aperfeiçoamento de uma ferramenta especificamente concebida para identificar e resolver problemas relacionados com os microsserviços. Esta ferramenta destina-se a melhorar o desempenho dos programadores durante o desenvolvimento e a implementação da arquitetura de microsserviços. Por último, o documento inclui uma avaliação do desempenho da ferramenta. Trata-se de uma análise comparativa efetuada antes e depois das melhorias introduzidas na ferramenta. A eficácia da ferramenta será avaliada utilizando o mesmo benchmarking de microsserviços utilizado anteriormente, para além de outro benchmarking para garantir uma avaliação abrangente.The microservices architecture stands as a beacon of promise in the software landscape, drawing developers and companies towards its compelling principles. Its appeal lies in the potential for improved scalability, flexibility, and agility, aligning with the ever-evolving demands of the digital age. However, navigating the intricacies of microservices can be a challenging task, especially as this field continues to evolve. A key challenge arises from the inherent complexity of microservices, where their sheer number and interdependencies can introduce new layers of intricacy. Furthermore, the rapid expansion of microservices, coupled with the need to harness their advantages effectively, demands a deeper understanding of the potential pitfalls and issues that may emerge. To truly unlock the benefits of microservices, it is essential to address these challenges head-on and ensure a successful journey in the world of microservices development and adoption. The present document intends to explore the area of microservice architecture smells that play such an important role in the technical debt directed to the area of microservices. It embarks on a comprehensive research exploration, delving into the realm of microservice smells. This research serves as the cornerstone for enhancing a microservice smell catalogue. This comprehensive research draws data from two primary sources: a systematic mapping research and an industry survey. The latter involves 31 seasoned professionals with substantial experience in the field of microservices. Moreover, the development and enhancement of a tool specifically designed to identify and address issues related to microservices is described. This tool is aimed at improving developers' performance throughout the development and implementation of microservices architecture. Finally, the document includes an evaluation of the tool's performance. This involves a comparative analysis conducted before and after the tool's enhancements. The tool's effectiveness will be assessed using the same microservice benchmarking as previously employed, in addition to another benchmark to ensure a comprehensive evaluation

    30 Years of Software Refactoring Research:A Systematic Literature Review

    Full text link
    Due to the growing complexity of software systems, there has been a dramatic increase and industry demand for tools and techniques on software refactoring in the last ten years, defined traditionally as a set of program transformations intended to improve the system design while preserving the behavior. Refactoring studies are expanded beyond code-level restructuring to be applied at different levels (architecture, model, requirements, etc.), adopted in many domains beyond the object-oriented paradigm (cloud computing, mobile, web, etc.), used in industrial settings and considered objectives beyond improving the design to include other non-functional requirements (e.g., improve performance, security, etc.). Thus, challenges to be addressed by refactoring work are, nowadays, beyond code transformation to include, but not limited to, scheduling the opportune time to carry refactoring, recommendations of specific refactoring activities, detection of refactoring opportunities, and testing the correctness of applied refactorings. Therefore, the refactoring research efforts are fragmented over several research communities, various domains, and objectives. To structure the field and existing research results, this paper provides a systematic literature review and analyzes the results of 3183 research papers on refactoring covering the last three decades to offer the most scalable and comprehensive literature review of existing refactoring research studies. Based on this survey, we created a taxonomy to classify the existing research, identified research trends, and highlighted gaps in the literature and avenues for further research.Comment: 23 page
    corecore