73 research outputs found

    Building the Future Internet through FIRE

    Get PDF
    The Internet as we know it today is the result of a continuous activity for improving network communications, end user services, computational processes and also information technology infrastructures. The Internet has become a critical infrastructure for the human-being by offering complex networking services and end-user applications that all together have transformed all aspects, mainly economical, of our lives. Recently, with the advent of new paradigms and the progress in wireless technology, sensor networks and information systems and also the inexorable shift towards everything connected paradigm, first as known as the Internet of Things and lately envisioning into the Internet of Everything, a data-driven society has been created. In a data-driven society, productivity, knowledge, and experience are dependent on increasingly open, dynamic, interdependent and complex Internet services. The challenge for the Internet of the Future design is to build robust enabling technologies, implement and deploy adaptive systems, to create business opportunities considering increasing uncertainties and emergent systemic behaviors where humans and machines seamlessly cooperate

    A service broker for Intercloud computing

    Get PDF
    This thesis aims at assisting users in finding the most suitable Cloud resources taking into account their functional and non-functional SLA requirements. A key feature of the work is a Cloud service broker acting as mediator between consumers and Clouds. The research involves the implementation and evaluation of two SLA-aware match-making algorithms by use of a simulation environment. The work investigates also the optimal deployment of Multi-Cloud workflows on Intercloud environments

    Assessing and Improving Interoperability of Distributed Systems

    Get PDF
    Interoperabilität von verteilten Systemen ist eine Grundlage für die Entwicklung von neuen und innovativen Geschäftslösungen. Sie erlaubt es existierende Dienste, die auf verschiedenen Systemen angeboten werden, so miteinander zu verknüpfen, dass neue oder erweiterte Dienste zur Verfügung gestellt werden können. Außerdem kann durch diese Integration die Zuverlässigkeit von Diensten erhöht werden. Das Erreichen und Bewerten von Interoperabilität stellt jedoch eine finanzielle und zeitliche Herausforderung dar. Zur Sicherstellung und Bewertung von Interoperabilität werden systematische Methoden benötigt. Um systematisch Interoperabilität von Systemen erreichen und bewerten zu können, wurde im Rahmen der vorliegenden Arbeit ein Prozess zur Verbesserung und Beurteilung von Interoperabilität (IAI) entwickelt. Der IAI-Prozess beinhaltet drei Phasen und kann die Interoperabilität von verteilten, homogenen und auch heterogenen Systemen bewerten und verbessern. Die Bewertung erfolgt dabei durch Interoperabilitätstests, die manuell oder automatisiert ausgeführt werden können. Für die Automatisierung von Interoperabilitätstests wird eine neue Methodik vorgestellt, die einen Entwicklungsprozess für automatisierte Interoperabilitätstestsysteme beinhaltet. Die vorgestellte Methodik erleichtert die formale und systematische Bewertung der Interoperabilität von verteilten Systemen. Im Vergleich zur manuellen Prüfung von Interoperabilität gewährleistet die hier vorgestellte Methodik eine höhere Testabdeckung, eine konsistente Testdurchführung und wiederholbare Interoperabilitätstests. Die praktische Anwendbarkeit des IAI-Prozesses und der Methodik für automatisierte Interoperabilitätstests wird durch drei Fallstudien belegt. In der ersten Fallstudie werden Prozess und Methodik für Internet Protocol Multimedia Subsystem (IMS) Netzwerke instanziiert. Die Interoperabilität von IMS-Netzwerken wurde bisher nur manuell getestet. In der zweiten und dritten Fallstudie wird der IAI-Prozess zur Beurteilung und Verbesserung der Interoperabilität von Grid- und Cloud-Systemen angewendet. Die Bewertung und Verbesserung dieser Interoperabilität ist eine Herausforderung, da Grid- und Cloud-Systeme im Gegensatz zu IMS-Netzwerken heterogen sind. Im Rahmen der Fallstudien werden Möglichkeiten für Integrations- und Interoperabilitätslösungen von Grid- und Infrastructure as a Service (IaaS) Cloud-Systemen sowie von Grid- und Platform as a Service (PaaS) Cloud-Systemen aufgezeigt. Die vorgestellten Lösungen sind in der Literatur bisher nicht dokumentiert worden. Sie ermöglichen die komplementäre Nutzung von Grid- und Cloud-Systemen, eine vereinfachte Migration von Grid-Anwendungen in ein Cloud-System sowie eine effiziente Ressourcennutzung. Die Interoperabilitätslösungen werden mit Hilfe des IAI-Prozesses bewertet. Die Durchführung der Tests für Grid-IaaS-Cloud-Systeme erfolgte manuell. Die Interoperabilität von Grid-PaaS-Cloud-Systemen wird mit Hilfe der Methodik für automatisierte Interoperabilitätstests bewertet. Interoperabilitätstests und deren Beurteilung wurden bisher in der Grid- und Cloud-Community nicht diskutiert, obwohl sie eine Basis für die Entwicklung von standardisierten Schnittstellen zum Erreichen von Interoperabilität zwischen Grid- und Cloud-Systemen bieten.Achieving interoperability of distributed systems offers means for the development of new and innovative business solutions. Interoperability allows the combination of existing services provided on different systems, into new or extended services. Such an integration can also increase the reliability of the provided service. However, achieving and assessing interoperability is a technical challenge that requires high effort regarding time and costs. The reasons are manifold and include differing implementations of standards as well as the provision of proprietary interfaces. The implementations need to be engineered to be interoperable. Techniques that assess and improve interoperability systematically are required. For the assurance of reliable interoperation between systems, interoperability needs to be assessed and improved in a systematic manner. To this aim, we present the Interoperability Assessment and Improvement (IAI) process, which describes in three phases how interoperability of distributed homogeneous and heterogeneous systems can be improved and assessed systematically. The interoperability assessment is achieved by means of interoperability testing, which is typically performed manually. For the automation of interoperability test execution, we present a new methodology including a generic development process for a complete and automated interoperability test system. This methodology provides means for a formalized and systematic assessment of systems' interoperability in an automated manner. Compared to manual interoperability testing, the application of our methodology has the following benefits: wider test coverage, consistent test execution, and test repeatability. We evaluate the IAI process and the methodology for automated interoperability testing in three case studies. Within the first case study, we instantiate the IAI process and the methodology for Internet Protocol Multimedia Subsystem (IMS) networks, which were previously assessed for interoperability only in a manual manner. Within the second and third case study, we apply the IAI process to assess and improve the interoperability of grid and cloud computing systems. Their interoperability assessment and improvement is challenging, since cloud and grid systems are, in contrast to IMS networks, heterogeneous. We develop integration and interoperability solutions for grids and Infrastructure as a Service (IaaS) clouds as well as for grids and Platform as a Service (PaaS) clouds. These solutions are unique and foster complementary usage of grids and clouds, simplified migration of grid applications into the cloud, as well as efficient resource utilization. In addition, we assess the interoperability of the grid-cloud interoperability solutions. While the tests for grid-IaaS clouds are performed manually, we applied our methodology for automated interoperability testing for the assessment of interoperability to grid-PaaS cloud interoperability successfully. These interoperability assessments are unique in the grid-cloud community and provide a basis for the development of standardized interfaces improving the interoperability between grids and clouds

    Building the Future Internet through FIRE

    Get PDF
    The Internet as we know it today is the result of a continuous activity for improving network communications, end user services, computational processes and also information technology infrastructures. The Internet has become a critical infrastructure for the human-being by offering complex networking services and end-user applications that all together have transformed all aspects, mainly economical, of our lives. Recently, with the advent of new paradigms and the progress in wireless technology, sensor networks and information systems and also the inexorable shift towards everything connected paradigm, first as known as the Internet of Things and lately envisioning into the Internet of Everything, a data-driven society has been created. In a data-driven society, productivity, knowledge, and experience are dependent on increasingly open, dynamic, interdependent and complex Internet services. The challenge for the Internet of the Future design is to build robust enabling technologies, implement and deploy adaptive systems, to create business opportunities considering increasing uncertainties and emergent systemic behaviors where humans and machines seamlessly cooperate

    Generic Methods for Adaptive Management of Service Level Agreements in Cloud Computing

    Get PDF
    The adoption of cloud computing to build and deliver application services has been nothing less than phenomenal. Service oriented systems are being built using disparate sources composed of web services, replicable datastores, messaging, monitoring and analytics functions and more. Clouds augment these systems with advanced features such as high availability, customer affinity and autoscaling on a fair pay-per-use cost model. The challenge lies in using the utility paradigm of cloud beyond its current exploit. Major trends show that multi-domain synergies are creating added-value service propositions. This raises two questions on autonomic behaviors, which are specifically ad- dressed by this thesis. The first question deals with mechanism design that brings the customer and provider(s) together in the procurement process. The purpose is that considering customer requirements for quality of service and other non functional properties, service dependencies need to be efficiently resolved and legally stipulated. The second question deals with effective management of cloud infrastructures such that commitments to customers are fulfilled and the infrastructure is optimally operated in accordance with provider policies. This thesis finds motivation in Service Level Agreements (SLAs) to answer these questions. The role of SLAs is explored as instruments to build and maintain trust in an economy where services are increasingly interdependent. The thesis takes a wholesome approach and develops generic methods to automate SLA lifecycle management, by identifying and solving relevant research problems. The methods afford adaptiveness in changing business landscape and can be localized through policy based controls. A thematic vision that emerges from this work is that business models, services and the delivery technology are in- dependent concepts that can be finely knitted together by SLAs. Experimental evaluations support the message of this thesis, that exploiting SLAs as foundations for market innovation and infrastructure governance indeed holds win-win opportunities for both cloud customers and cloud providers

    Intermediador de serviços na Nuvem

    Get PDF
    Mestrado em Engenharia de Computadores e TelemáticaDe acordo com história dos sistemas informáticos, os engenheiros têm vindo a remodelar infraestruturas para melhorar a eficiência das organizações, visando o acesso partilhado a recursos computacionais. O advento da computação em núvem desencadeou um novo paradigma, proporcionando melhorias no alojamento e entrega de serviços através da Internet. Quando comparado com abordagens tradicionais, este apresenta vantajens por disponibilizar acesso ubíquo, escalável e sob demanda, a determinados conjuntos de recursos computacionais partilhados. Ao longo dos últimos anos, observou-se a entrada de novos operadores que providenciam serviços na núvem, a preços competitivos e diferentes acordos de nível de serviço (“Service Level Agreements”). Com a adoção crescente e sem precedentes da computação em núvem, os fornecedores da área estão se a focar na criação e na disponibilização de novos serviços, com valor acrescentado para os seus clientes. A competitividade do mercado e a existência de inúmeras opções de serviços e de modelos de negócio gerou entropia. Por terem sido criadas diferentes terminologias para conceitos com o mesmo significado e o facto de existir incompatibilidade de Interfaces de Programação Aplicacional (“Application Programming Interface”), deu-se uma restrição de fornecedores de serviços específicos na núvem a utilizadores. A fragmentação na faturação e na cobrança ocorreu quando os serviços na núvem passaram a ser contratualizados com diferentes fornecedores. Posto isto, seria uma mais valia existir uma entidade, que harmonizasse a relação entre os clientes e os múltiplos fornecedores de serviços na núvem, por meio de recomendação e auxílio na intermediação. Esta dissertação propõe e implementa um Intermediador de Serviços na Núvem focado no auxílio e motivação de programadores para recorrerem às suas aplicações na núvem. Descrevendo as aplicações de modo facilitado, um algoritmo inteligente recomendará várias ofertas de serviços na núvem cumprindo com os requisitos aplicacionais. Desta forma, é prestado aos utilizadores formas de submissão, gestão, monitorização e migração das suas aplicações numa núvem de núvens. A interação decorre a partir de uma única interface de programação que orquestrará todo um processo juntamente com outros gestores de serviços na núvem. Os utilizadores podem ainda interagir com o Intermediador de Serviços na Núvem a partir de um portal Web, uma interface de linha de comandos e bibliotecas cliente.Throughout the history of computer systems, experts have been reshaping IT infrastructure for improving the efficiency of organizations by enabling shared access to computational resources. The advent of cloud computing has sparked a new paradigm providing better hosting and service delivery over the Internet. It offers advantages over traditional solutions by providing ubiquitous, scalable and on-demand access to shared pools of computational resources. Over the course of these last years, we have seen new market players offering cloud services at competitive prices and different Service Level Agreements. With the unprecedented increasing adoption of cloud computing, cloud providers are on the look out for the creation and offering of new and valueadded services towards their customers. Market competitiveness, numerous service options and business models led to gradual entropy. Mismatching cloud terminology got introduced and incompatible APIs locked-in users to specific cloud service providers. Billing and charging become fragmented when consuming cloud services from multiple vendors. An entity recommending cloud providers and acting as an intermediary between the cloud consumer and providers would harmonize this interaction. This dissertation proposes and implements a Cloud Service Broker focusing on assisting and encouraging developers for running their applications on the cloud. Developers can easily describe their applications, where an intelligent algorithm will be able to recommend cloud offerings that better suit application requirements. In this way, users are aided in deploying, managing, monitoring and migrating their applications in a cloud of clouds. A single API is required for orchestrating the whole process in tandem with truly decoupled cloud managers. Users can also interact with the Cloud Service Broker through a Web portal, a command-line interface, and client libraries

    Business-driven resource allocation and management for data centres in cloud computing markets

    Get PDF
    Cloud Computing markets arise as an efficient way to allocate resources for the execution of tasks and services within a set of geographically dispersed providers from different organisations. Client applications and service providers meet in a market and negotiate for the sales of services by means of the signature of a Service Level Agreement that contains the Quality of Service terms that the Cloud provider has to guarantee by managing properly its resources. Current implementations of Cloud markets suffer from a lack of information flow between the negotiating agents, which sell the resources, and the resource managers that allocate the resources to fulfil the agreed Quality of Service. This thesis establishes an intermediate layer between the market agents and the resource managers. In consequence, agents can perform accurate negotiations by considering the status of the resources in their negotiation models, and providers can manage their resources considering both the performance and the business objectives. This thesis defines a set of policies for the negotiation and enforcement of Service Level Agreements. Such policies deal with different Business-Level Objectives: maximisation of the revenue, classification of clients, trust and reputation maximisation, and risk minimisation. This thesis demonstrates the effectiveness of such policies by means of fine-grained simulations. A pricing model may be influenced by many parameters. The weight of such parameters within the final model is not always known, or it can change as the market environment evolves. This thesis models and evaluates how the providers can self-adapt to changing environments by means of genetic algorithms. Providers that rapidly adapt to changes in the environment achieve higher revenues than providers that do not. Policies are usually conceived for the short term: they model the behaviour of the system by considering the current status and the expected immediate after their application. This thesis defines and evaluates a trust and reputation system that enforces providers to consider the impact of their decisions in the long term. The trust and reputation system expels providers and clients with dishonest behaviour, and providers that consider the impact of their reputation in their actions improve on the achievement of their Business-Level Objectives. Finally, this thesis studies the risk as the effects of the uncertainty over the expected outcomes of cloud providers. The particularities of cloud appliances as a set of interconnected resources are studied, as well as how the risk is propagated through the linked nodes. Incorporating risk models helps providers differentiate Service Level Agreements according to their risk, take preventive actions in the focus of the risk, and pricing accordingly. Applying risk management raises the fulfilment rate of the Service-Level Agreements and increases the profit of the providerPostprint (published version

    Deployment and Operation of Complex Software in Heterogeneous Execution Environments

    Get PDF
    This open access book provides an overview of the work developed within the SODALITE project, which aims at facilitating the deployment and operation of distributed software on top of heterogeneous infrastructures, including cloud, HPC and edge resources. The experts participating in the project describe how SODALITE works and how it can be exploited by end users. While multiple languages and tools are available in the literature to support DevOps teams in the automation of deployment and operation steps, still these activities require specific know-how and skills that cannot be found in average teams. The SODALITE framework tackles this problem by offering modelling and smart editing features to allow those we call Application Ops Experts to work without knowing low level details about the adopted, potentially heterogeneous, infrastructures. The framework offers also mechanisms to verify the quality of the defined models, generate the corresponding executable infrastructural code, automatically wrap application components within proper execution containers, orchestrate all activities concerned with deployment and operation of all system components, and support on-the-fly self-adaptation and refactoring
    corecore