92 research outputs found

    Internet of Everything in the Teaching-Learning Approach: An Integrative Review

    Get PDF
    Introduction: The fourth industrial revolution or industry 4.0 has brought a variety of technologies to different societies. One of these technologies is the Internet of Things (IoT), primarily conceptualized in engineering fields and then found its way to the field of education. Internet of Everything (IoE) has been discussed in the evolution of the IoT concept. IoE mainly focuses on things, people, processes, and data. This paper aims to investigate different studies from the emergence of IoT concept and its development to IoE based teaching-learning process.Methods: The integrative review was applied as the research method, Web of Science and Scopus databases were directly investigated and 139 articles were finalized as the result of this integrative review.Results: Findings of this study demonstrated that the teaching learning process with the focus on IoE could be categorized into logic models, including inputs, activities, outputs, outcomes, and external factors. Based on extracted components, the final model showed that the teaching-learning approach with the focus on IoE is a process that mainly occurs through integration and connection of IoT-based infrastructures, stakeholder’s interactions, teaching and learning activities. Eventually, this has brought personal and general outputs to achieve sustainability, Green IoT, and meeting the needs of industry. Simultaneously with the implementation or application of this system, several challenges can arise in the process, namely Security, Privacy, Financing, Reliable connectivity, and Cloud infrastructure.Conclusion: Therefore, this model can help policymakers or educators to be aware of the different parts of an IoE-based education system

    Smart campuses : extensive review of the last decade of research and current challenges

    Get PDF
    Novel intelligent systems to assist energy transition and improve sustainability can be deployed at different scales, ranging from a house to an entire region. University campuses are an interesting intermediate size (big enough to matter and small enough to be tractable) for research, development, test and training on the integration of smartness at all levels, which has led to the emergence of the concept of “smart campus” over the last few years. This review article proposes an extensive analysis of the scientific literature on smart campuses from the last decade (2010-2020). The 182 selected publications are distributed into seven categories of smartness: smart building, smart environment, smart mobility, smart living, smart people, smart governance and smart data. The main open questions and challenges regarding smart campuses are presented at the end of the review and deal with sustainability and energy transition, acceptability and ethics, learning models, open data policies and interoperability. The present work was carried out within the framework of the Energy Network of the Regional Leaders Summit (RLS-Energy) as part of its multilateral research efforts on smart region

    Assistive technologies for severe and profound hearing loss: beyond hearing aids and implants

    Get PDF
    Assistive technologies offer capabilities that were previously inaccessible to individuals with severe and profound hearing loss who have no or limited access to hearing aids and implants. This literature review aims to explore existing assistive technologies and identify what still needs to be done. It is found that there is a lack of focus on the overall objectives of assistive technologies. In addition, several other issues are identified i.e. only a very small number of assistive technologies developed within a research context have led to commercial devices, there is a predisposition to use the latest expensive technologies and a tendency to avoid designing products universally. Finally, the further development of plug-ins that translate the text content of a website to various sign languages is needed to make information on the internet more accessible

    NMC Horizon Report: 2017 Higher Education Edition

    Get PDF
    The NMC Horizon Report > 2017 Higher Education Edition is a collaborative effort between the NMC and the EDUCAUSE Learning Initiative (ELI). This 14th edition describes annual findings from the NMC Horizon Project, an ongoing research project designed to identify and describe emerging technologies likely to have an impact on learning, teaching, and creative inquiry in education. Six key trends, six significant challenges, and six important developments in educational technology are placed directly in the context of their likely impact on the core missions of universities and colleges. The three key sections of this report constitute a reference and straightforward technology-planning guide for educators, higher education leaders, administrators, policymakers, and technologists. It is our hope that this research will help to inform the choices that institutions are making about technology to improve, support, or extend teaching, learning, and creative inquiry in higher education across the globe. All of the topics were selected by an expert panel that represented a range of backgrounds and perspectives

    Indoor navigation for the visually impaired : enhancements through utilisation of the Internet of Things and deep learning

    Get PDF
    Wayfinding and navigation are essential aspects of independent living that heavily rely on the sense of vision. Walking in a complex building requires knowing exact location to find a suitable path to the desired destination, avoiding obstacles and monitoring orientation and movement along the route. People who do not have access to sight-dependent information, such as that provided by signage, maps and environmental cues, can encounter challenges in achieving these tasks independently. They can rely on assistance from others or maintain their independence by using assistive technologies and the resources provided by smart environments. Several solutions have adapted technological innovations to combat navigation in an indoor environment over the last few years. However, there remains a significant lack of a complete solution to aid the navigation requirements of visually impaired (VI) people. The use of a single technology cannot provide a solution to fulfil all the navigation difficulties faced. A hybrid solution using Internet of Things (IoT) devices and deep learning techniques to discern the patterns of an indoor environment may help VI people gain confidence to travel independently. This thesis aims to improve the independence and enhance the journey of VI people in an indoor setting with the proposed framework, using a smartphone. The thesis proposes a novel framework, Indoor-Nav, to provide a VI-friendly path to avoid obstacles and predict the user s position. The components include Ortho-PATH, Blue Dot for VI People (BVIP), and a deep learning-based indoor positioning model. The work establishes a novel collision-free pathfinding algorithm, Orth-PATH, to generate a VI-friendly path via sensing a grid-based indoor space. Further, to ensure correct movement, with the use of beacons and a smartphone, BVIP monitors the movements and relative position of the moving user. In dark areas without external devices, the research tests the feasibility of using sensory information from a smartphone with a pre-trained regression-based deep learning model to predict the user s absolute position. The work accomplishes a diverse range of simulations and experiments to confirm the performance and effectiveness of the proposed framework and its components. The results show that Indoor-Nav is the first type of pathfinding algorithm to provide a novel path to reflect the needs of VI people. The approach designs a path alongside walls, avoiding obstacles, and this research benchmarks the approach with other popular pathfinding algorithms. Further, this research develops a smartphone-based application to test the trajectories of a moving user in an indoor environment

    The SEE toolkit:How Young Adults Manage Low Self-esteem Using Personal Technologies

    Get PDF

    Interactive Technologies Helping Young Adults Manage Low Self-Esteem

    Get PDF

    Increasing Confidence through Competence in People with Dementia Through Meaningful Conversations

    Get PDF

    Exploring young children???s ideas about wearable technology: a case study

    Get PDF
    This case study, which forms a part of the Kids, Creative Storyworlds and Wearables project, explores children???s perspectives on wearable technology through their stories and other creative ideas inspired by wearable technology. Five children between the ages of four and seven were each given a smartwatch and were interviewed three times over the span of four weeks. Using a multi-method approach, inspired by the Mosaic approach to ethnography (Clark & Moss, 2011; Clark, 2005) and social semiotics (Kress and van Leeuwen, 2006; Kress, 1997), children were invited to share their ideas in a variety of ways (face-to-face discussion, oral storytelling, written text, drawings). This research viewed children as meaning-makers and sign-makers. Results supported and extended elements of Papert???s constructionist learning theory and Sutton Smith???s ???play as a viability variable??? theory (2008) and provided novel insights relevant to formal education practices. Empowerment is a key theme that emerged from this case study
    corecore