259,265 research outputs found

    Interoperability Framework for Smart Home Systems.

    Get PDF
    Recent advancements in smart home systems have increased the utilization of consumer devices and appliances in home environment. However, many of these devices and appliances exhibit certain degree of heterogeneity and do not adapt towards joint execution of operation. Hence, it is rather difficult to perform interoperation especially to realize desired services preferred by home users. In this paper, we propose a new intelligent interoperability framework for smart home systems execution as well as coordinating them in a federated manner. The framework core is based on Simple Object Access Protocol (SOAP) technology that provides platform independent interoperation among heterogeneous systems. We have implemented the interoperability framework with several home devices to demonstrate their effectiveness for interoperation. The performance of the framework was tested in Local Area Network (LAN) environment and proves to be reliable in smart home settin

    A rule-based framework for heterogeneous subsystems management in smart home environment

    Get PDF
    Recent advancements in computing and communication technologies have increased the growth of heterogeneous subsystems in smart home environment. However, many of these heterogeneous systems are standalone and do not adapt towards joint execution of tasks. Hence, it is rather difficult to perform interoperation especially to realize desired services preferred by home dwellers. In this paper, we propose a new rule-based framework for heterogeneous systems management as well as coordinating them by means of federated manner in smart home environment. The proposed framework is based on event-condition-action (ECA) rule mechanism with SOAP technology that provides interoperability among those systems. We have implemented the framework with several subsystems to demonstrate their effectiveness for interoperation using ECA rule mechanism. The performance of the framework was tested in LAN environment and proves to be reliable in smart home setting

    Access control for IoT environments: specification and analysis

    Get PDF
    2021 Spring.Includes bibliographical references.Smart homes have devices which are prone to attacks as seen in the 2016 Mirai botnet attacks. Authentication and access control form the first line of defense. Towards this end, we propose an attribute-based access control framework for smart homes that is inspired by the Next Generation Access Control (NGAC) model. Policies in a smart home can be complex. Towards this end, we demonstrate how the formal modeling language Alloy can be used for policy analysis. In this work we formally define an IoT environment, express an example security policy in the context of a smart home, and show the policy analysis using Alloy. This work introduces processes for identifying conflicting and redundant rules with respect to a given policy. This work also demonstrates a practical use case for the processes described. In other words, this work formalizes policy rule definition, home IoT environment definition, and rule analysis all in the context of NGAC and Alloy

    Cyber physical anomaly detection for smart homes: A survey

    Get PDF
    Twenty-first-century human beings spend more than 90\% of their time in indoor environments. The emergence of cyber systems in the physical world has a plethora of benefits towards optimising resources and improving living standards. However, because of significant vulnerabilities in cyber systems, connected physical spaces are exposed to privacy risks in addition to existing and novel security challenges. To mitigate these risks and challenges, researchers opt for anomaly detection techniques. Particularly in smart home environments, the anomaly detection techniques are either focused on network traffic (cyber phenomena) or environmental (physical phenomena) sensors' data. This paper reviewed anomaly detection techniques presented for smart home environments using cyber data and physical data in the past. We categorise anomalies as known and unknown in smart homes. We also compare publicly available datasets for anomaly detection in smart home environments. In the end, we discuss essential key considerations and provide a decision-making framework towards supporting the implementation of anomaly detection systems for smart homes

    Your Smart Home Can't Keep a Secret: Towards Automated Fingerprinting of IoT Traffic with Neural Networks

    Get PDF
    The IoT (Internet of Things) technology has been widely adopted in recent years and has profoundly changed the people's daily lives. However, in the meantime, such a fast-growing technology has also introduced new privacy issues, which need to be better understood and measured. In this work, we look into how private information can be leaked from network traffic generated in the smart home network. Although researchers have proposed techniques to infer IoT device types or user behaviors under clean experiment setup, the effectiveness of such approaches become questionable in the complex but realistic network environment, where common techniques like Network Address and Port Translation (NAPT) and Virtual Private Network (VPN) are enabled. Traffic analysis using traditional methods (e.g., through classical machine-learning models) is much less effective under those settings, as the features picked manually are not distinctive any more. In this work, we propose a traffic analysis framework based on sequence-learning techniques like LSTM and leveraged the temporal relations between packets for the attack of device identification. We evaluated it under different environment settings (e.g., pure-IoT and noisy environment with multiple non-IoT devices). The results showed our framework was able to differentiate device types with a high accuracy. This result suggests IoT network communications pose prominent challenges to users' privacy, even when they are protected by encryption and morphed by the network gateway. As such, new privacy protection methods on IoT traffic need to be developed towards mitigating this new issue

    Smart homes and their users:a systematic analysis and key challenges

    Get PDF
    Published research on smart homes and their users is growing exponentially, yet a clear understanding of who these users are and how they might use smart home technologies is missing from a field being overwhelmingly pushed by technology developers. Through a systematic analysis of peer-reviewed literature on smart homes and their users, this paper takes stock of the dominant research themes and the linkages and disconnects between them. Key findings within each of nine themes are analysed, grouped into three: (1) views of the smart home-functional, instrumental, socio-technical; (2) users and the use of the smart home-prospective users, interactions and decisions, using technologies in the home; and (3) challenges for realising the smart home-hardware and software, design, domestication. These themes are integrated into an organising framework for future research that identifies the presence or absence of cross-cutting relationships between different understandings of smart homes and their users. The usefulness of the organising framework is illustrated in relation to two major concerns-privacy and control-that have been narrowly interpreted to date, precluding deeper insights and potential solutions. Future research on smart homes and their users can benefit by exploring and developing cross-cutting relationships between the research themes identified

    Towards a Usable Framework for Modelling Security and Privacy Risks in the Smart Home

    Get PDF
    The Internet-of-Things (IoT) ushers in a new age where the variety and amount of connected, smart devices present in the home is set to increase substantially. While these bring several advantages in terms of convenience and assisted living, security and privacy risks are also a concern. In this article, we consider this risk problem from the perspective of technology users in the smart home, and set out to provide a usable framework for modelling security and privacy risks. The novelty of this work is in its emphasis on supplying a simplified risk assessment approach, complete with typical smart home use cases, home devices, IoT threat and attack models, and potential security controls. The intention is for this framework and the supporting tool interface to be used by actual home users interested in understanding and managing the risks in their smart home environments

    Design and Evaluation of a Solo-Resident Smart Home Testbed for Mobility Pattern Monitoring and Behavioural Assessment

    Full text link
    [EN] Aging population increase demands for solutions to help the solo-resident elderly live independently. Unobtrusive data collection in a smart home environment can monitor and assess elderly residents' health state based on changes in their mobility patterns. In this paper, a smart home system testbed setup for a solo-resident house is discussed and evaluated. We use paired Passive infra-red (PIR) sensors at each entry of a house and capture the resident's activities to model mobility patterns. We present the required testbed implementation phases, i.e., deployment, post-deployment analysis, re-deployment, and conduct behavioural data analysis to highlight the usability of collected data from a smart home. The main contribution of this work is to apply intelligence from a post-deployment process mining technique (namely, the parallel activity log inference algorithm (PALIA)) to find the best configuration for data collection in order to minimise the errors. Based on the post-deployment analysis, a re-deployment phase is performed, and results show the improvement of collected data accuracy in re-deployment phase from 81.57% to 95.53%. To complete our analysis, we apply the well-known CASAS project dataset as a reference to conduct a comparison with our collected results which shows a similar pattern. The collected data further is processed to use the level of activity of the solo-resident for a behaviour assessment.Shirali, M.; Bayo-Monton, JL.; Fernández Llatas, C.; Ghassemian, M.; Traver Salcedo, V. (2020). Design and Evaluation of a Solo-Resident Smart Home Testbed for Mobility Pattern Monitoring and Behavioural Assessment. Sensors. 20(24):1-25. https://doi.org/10.3390/s20247167S1252024Lutz, W., Sanderson, W., & Scherbov, S. (2001). The end of world population growth. Nature, 412(6846), 543-545. doi:10.1038/35087589United Nations, Department of Economic and Social Affairs, World Population Prospoects 2019 https://population.un.org/wpp/Publications/Files/WPP2019_Highlights.pdfAtzori, L., Iera, A., & Morabito, G. (2017). Understanding the Internet of Things: definition, potentials, and societal role of a fast evolving paradigm. Ad Hoc Networks, 56, 122-140. doi:10.1016/j.adhoc.2016.12.004Cook, D. J., Duncan, G., Sprint, G., & Fritz, R. L. (2018). Using Smart City Technology to Make Healthcare Smarter. Proceedings of the IEEE, 106(4), 708-722. doi:10.1109/jproc.2017.2787688Cook, D. J., & Krishnan, N. (2014). Mining the home environment. Journal of Intelligent Information Systems, 43(3), 503-519. doi:10.1007/s10844-014-0341-4Alaa, M., Zaidan, A. A., Zaidan, B. B., Talal, M., & Kiah, M. L. M. (2017). A review of smart home applications based on Internet of Things. Journal of Network and Computer Applications, 97, 48-65. doi:10.1016/j.jnca.2017.08.017Palipana, S., Pietropaoli, B., & Pesch, D. (2017). Recent advances in RF-based passive device-free localisation for indoor applications. Ad Hoc Networks, 64, 80-98. doi:10.1016/j.adhoc.2017.06.007Chen, G., Wang, A., Zhao, S., Liu, L., & Chang, C.-Y. (2017). Latent feature learning for activity recognition using simple sensors in smart homes. Multimedia Tools and Applications, 77(12), 15201-15219. doi:10.1007/s11042-017-5100-4Tewell, J., O’Sullivan, D., Maiden, N., Lockerbie, J., & Stumpf, S. (2019). Monitoring meaningful activities using small low-cost devices in a smart home. Personal and Ubiquitous Computing, 23(2), 339-357. doi:10.1007/s00779-019-01223-2Krishnan, N. C., & Cook, D. J. (2014). Activity recognition on streaming sensor data. Pervasive and Mobile Computing, 10, 138-154. doi:10.1016/j.pmcj.2012.07.003Wang, A., Chen, G., Wu, X., Liu, L., An, N., & Chang, C.-Y. (2018). Towards Human Activity Recognition: A Hierarchical Feature Selection Framework. Sensors, 18(11), 3629. doi:10.3390/s18113629Liu, Y., Wang, X., Zhai, Z., Chen, R., Zhang, B., & Jiang, Y. (2019). Timely daily activity recognition from headmost sensor events. ISA Transactions, 94, 379-390. doi:10.1016/j.isatra.2019.04.026Viani, F., Robol, F., Polo, A., Rocca, P., Oliveri, G., & Massa, A. (2013). Wireless Architectures for Heterogeneous Sensing in Smart Home Applications: Concepts and Real Implementation. Proceedings of the IEEE, 101(11), 2381-2396. doi:10.1109/jproc.2013.2266858Rashidi, P., Cook, D. J., Holder, L. B., & Schmitter-Edgecombe, M. (2011). Discovering Activities to Recognize and Track in a Smart Environment. IEEE Transactions on Knowledge and Data Engineering, 23(4), 527-539. doi:10.1109/tkde.2010.148Samsung SmartThings http://www.smartthings.com/Apple HomeKit https://www.apple.com/ios/home/Vera3 Advanced Smart Home Controller http://getvera.com/controllers/vera3/AndroidThings https://developer.android.com/things/index.htmlTeleAlarm Assisted Living http://www.telealarm.com/en/products/assisted-livingBirdie—Connected Sensors around the Home https://birdie.care/AllJoyn Framework https://identity.allseenalliance.org/developersCook, D. J., Crandall, A. S., Thomas, B. L., & Krishnan, N. C. (2013). CASAS: A Smart Home in a Box. Computer, 46(7), 62-69. doi:10.1109/mc.2012.328Skubic, M., Alexander, G., Popescu, M., Rantz, M., & Keller, J. (2009). A smart home application to eldercare: Current status and lessons learned. Technology and Health Care, 17(3), 183-201. doi:10.3233/thc-2009-0551Helal, S., Mann, W., El-Zabadani, H., King, J., Kaddoura, Y., & Jansen, E. (2005). The Gator Tech Smart House: a programmable pervasive space. Computer, 38(3), 50-60. doi:10.1109/mc.2005.107Doctor, F., Hagras, H., & Callaghan, V. (2005). A Fuzzy Embedded Agent-Based Approach for Realizing Ambient Intelligence in Intelligent Inhabited Environments. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 35(1), 55-65. doi:10.1109/tsmca.2004.838488Abowd, G. D., & Mynatt, E. D. (2005). Designing for the Human Experience in Smart Environments. Smart Environments, 151-174. doi:10.1002/047168659x.ch7Technology Integrated Health Management (TIHM) Project https://www.sabp.nhs.uk/tihmAhvar, E., Daneshgar-Moghaddam, N., Ortiz, A. M., Lee, G. M., & Crespi, N. (2016). On analyzing user location discovery methods in smart homes: A taxonomy and survey. Journal of Network and Computer Applications, 76, 75-86. doi:10.1016/j.jnca.2016.09.012Milenkovic, M., & Amft, O. (2013). Recognizing Energy-related Activities Using Sensors Commonly Installed in Office Buildings. Procedia Computer Science, 19, 669-677. doi:10.1016/j.procs.2013.06.089Fernandez-Llatas, C., Lizondo, A., Monton, E., Benedi, J.-M., & Traver, V. (2015). Process Mining Methodology for Health Process Tracking Using Real-Time Indoor Location Systems. Sensors, 15(12), 29821-29840. doi:10.3390/s151229769Dogan, O., Bayo-Monton, J.-L., Fernandez-Llatas, C., & Oztaysi, B. (2019). Analyzing of Gender Behaviors from Paths Using Process Mining: A Shopping Mall Application. Sensors, 19(3), 557. doi:10.3390/s19030557Schmitter-Edgecombe, M., & Cook, D. J. (2009). Assessing the Quality of Activities in a Smart Environment. Methods of Information in Medicine, 48(05), 480-485. doi:10.3414/me0592Alberdi Aramendi, A., Weakley, A., Aztiria Goenaga, A., Schmitter-Edgecombe, M., & Cook, D. J. (2018). Automatic assessment of functional health decline in older adults based on smart home data. Journal of Biomedical Informatics, 81, 119-130. doi:10.1016/j.jbi.2018.03.009Dawadi, P. N., Cook, D. J., & Schmitter-Edgecombe, M. (2016). Automated Cognitive Health Assessment From Smart Home-Based Behavior Data. IEEE Journal of Biomedical and Health Informatics, 20(4), 1188-1194. doi:10.1109/jbhi.2015.2445754Sprint, G., Cook, D. J., & Schmitter-Edgecombe, M. (2017). Unsupervised Detection and Analysis of Changes in Everyday Physical Activity Data. Intelligent Systems Reference Library, 97-122. doi:10.1007/978-3-319-67513-8_6Taheri Tanjanai, P., Moradinazar, M., & Najafi, F. (2016). Prevalence of depression and related social and physical factors amongst the Iranian elderly population in 2012. Geriatrics & Gerontology International, 17(1), 126-131. doi:10.1111/ggi.12680Zhao, Z., Zhang, M., Yang, C., Fang, J., & Huang, G. Q. (2018). Distributed and collaborative proactive tandem location tracking of vehicle products for warehouse operations. Computers & Industrial Engineering, 125, 637-648. doi:10.1016/j.cie.2018.05.00

    Architectures for smart end-user services in the power grid

    Get PDF
    Abstract-The increase of distributed renewable electricity generators, such as solar cells and wind turbines, requires a new energy management system. These distributed generators introduce bidirectional energy flows in the low-voltage power grid, requiring novel coordination mechanisms to balance local supply and demand. Closed solutions exist for energy management on the level of individual homes. However, no service architectures have been defined that allow the growing number of end-users to interact with the other power consumers and generators and to get involved in more rational energy consumption patterns using intuitive applications. We therefore present a common service architecture that allows houses with renewable energy generation and smart energy devices to plug into a distributed energy management system, integrated with the public power grid. Next to the technical details, we focus on the usability aspects of the end-user applications in order to contribute to high service adoption and optimal user involvement. The presented architecture facilitates end-users to reduce net energy consumption, enables power grid providers to better balance supply and demand, and allows new actors to join with new services. We present a novel simulator that allows to evaluate both the power grid and data communication aspects, and illustrate a 22% reduction of the peak load by deploying a central coordinator inside the home gateway of an end-user
    corecore