11,327 research outputs found

    Software Engineering Timeline: major areas of interest and multidisciplinary trends

    Get PDF
    Ingeniería del software. EvolucionSociety today cannot run without software and by extension, without Software Engineering. Since this discipline emerged in 1968, practitioners have learned valuable lessons that have contributed to current practices. Some have become outdated but many are still relevant and widely used. From the personal and incomplete perspective of the authors, this paper not only reviews the major milestones and areas of interest in the Software Engineering timeline helping software engineers to appreciate the state of things, but also tries to give some insights into the trends that this complex engineering will see in the near future

    Cloud-computing strategies for sustainable ICT utilization : a decision-making framework for non-expert Smart Building managers

    Get PDF
    Virtualization of processing power, storage, and networking applications via cloud-computing allows Smart Buildings to operate heavy demand computing resources off-premises. While this approach reduces in-house costs and energy use, recent case-studies have highlighted complexities in decision-making processes associated with implementing the concept of cloud-computing. This complexity is due to the rapid evolution of these technologies without standardization of approach by those organizations offering cloud-computing provision as a commercial concern. This study defines the term Smart Building as an ICT environment where a degree of system integration is accomplished. Non-expert managers are highlighted as key users of the outcomes from this project given the diverse nature of Smart Buildings’ operational objectives. This research evaluates different ICT management methods to effectively support decisions made by non-expert clients to deploy different models of cloud-computing services in their Smart Buildings ICT environments. The objective of this study is to reduce the need for costly 3rd party ICT consultancy providers, so non-experts can focus more on their Smart Buildings’ core competencies rather than the complex, expensive, and energy consuming processes of ICT management. The gap identified by this research represents vulnerability for non-expert managers to make effective decisions regarding cloud-computing cost estimation, deployment assessment, associated power consumption, and management flexibility in their Smart Buildings ICT environments. The project analyses cloud-computing decision-making concepts with reference to different Smart Building ICT attributes. In particular, it focuses on a structured programme of data collection which is achieved through semi-structured interviews, cost simulations and risk-analysis surveys. The main output is a theoretical management framework for non-expert decision-makers across variously-operated Smart Buildings. Furthermore, a decision-support tool is designed to enable non-expert managers to identify the extent of virtualization potential by evaluating different implementation options. This is presented to correlate with contract limitations, security challenges, system integration levels, sustainability, and long-term costs. These requirements are explored in contrast to cloud demand changes observed across specified periods. Dependencies were identified to greatly vary depending on numerous organizational aspects such as performance, size, and workload. The study argues that constructing long-term, sustainable, and cost-efficient strategies for any cloud deployment, depends on the thorough identification of required services off and on-premises. It points out that most of today’s heavy-burdened Smart Buildings are outsourcing these services to costly independent suppliers, which causes unnecessary management complexities, additional cost, and system incompatibility. The main conclusions argue that cloud-computing cost can differ depending on the Smart Building attributes and ICT requirements, and although in most cases cloud services are more convenient and cost effective at the early stages of the deployment and migration process, it can become costly in the future if not planned carefully using cost estimation service patterns. The results of the study can be exploited to enhance core competencies within Smart Buildings in order to maximize growth and attract new business opportunities

    Legal issues in clouds: towards a risk inventory.

    Get PDF
    Cloud computing technologies have reached a high level of development, yet a number of obstacles still exist that must be overcome before widespread commercial adoption can become a reality. In a cloud environment, end users requesting services and cloud providers negotiate service-level agreements (SLAs) that provide explicit statements of all expectations and obligations of the participants. If cloud computing is to experience widespread commercial adoption, then incorporating risk assessment techniques is essential during SLA negotiation and service operation. This article focuses on the legal issues surrounding risk assessment in cloud computing. Specifically, it analyses risk regarding data protection and security, and presents the requirements of an inherent risk inventory. The usefulness of such a risk inventory is described in the context of the OPTIMIS project

    Managing Cyber Risk and Security In Cloud Computing

    Get PDF
    Cloud computing provides outsourcing of resources bringing economic benefits. The outsourcing however does not allow data owners to outsource the responsibility of confidentiality, integrity and access control, as it still is the responsibility of the data owner. As cloud computing is transparent to both the programmers and the users, it induces challenges that were not present in previous forms of distributed computing. Furthermore, cloud computing enables its users to abstract away from low-level configuration such as configuring IP addresses and routers. It creates an illusion that this entire configuration is automated. This illusion is also true for security services, for instance automating security policies and access control in cloud, so that individuals or end-users using the cloud only perform very high-level (business oriented) configuration. This paper investigates the security challenges posed by the transparency of distribution, abstraction of configuration and automation of services by performing a detailed threat analysis of cloud computing across its different deployment scenarios (private, bursting, federation or multi-clouds). This paper also presents a risk inventory which documents the security threats identified in terms of availability, integrity and confidentiality for cloud infrastructures in detail for future security risks. We also propose a methodology for performing security risk assessment for cloud computing architectures presenting some of the initial results

    A resiliency framework for an enterprise cloud

    Get PDF
    This paper presents a systematic approach to develop a resilient software system which can be developed as emerging services and analytics for resiliency. While using the resiliency as a good example for enterprise cloud security, all resilient characteristics should be blended together to produce greater impacts. A framework, Cloud Computing Adoption Framework (CCAF), is presented in details. CCAF has four major types of emerging services and each one has been explained in details with regard to the individual function and how each one can be integrated. CCAF is an architectural framework that blends software resilience, service components and guidelines together and provides real case studies to produce greater impacts to the organizations adopting Cloud Computing and security. CCAF provides business alignments and provides agility, efficiency and integration for business competitive edge. In order to validate user requirements and system designs, a large scale survey has been conducted with detailed analysis provided for each major question. We present our discussion and conclude that the use of CCAF framework can illustrate software resilience and security improvement for enterprise security. CCAF framework itself is validated as an emerging service for Enterprise Cloud Computing with analytics showing survey analysi

    Construction informatics in Turkey: strategic role of ICT and future research directions

    Get PDF
    Construction Informatics deals with subjects ranging from strategic management of ICTs to interoperability and information integration in the construction industry. Studies on defining research directions for Construction Informatics have a history over 20 years. The recent studies in the area highlight the priority themes for Construction Informatics research as interoperability, collaboration support, intelligent sites and knowledge sharing. In parallel, today it is widely accepted in the Architecture/Engineering/Construction (AEC) industry that ICT is becoming a strategic asset for any organisation to deliver business improvement and achieve sustainable competitive advantage. However, traditionally the AEC industry has approached investing in ICT with a lack of strategic focus and low level of priority to the business. This paper presents a recent study from Turkey that is focused on two themes. The first theme investigates the strategic role of ICT implementations from an industrial perspective, and explores if organisations within the AEC industry view ICT as a strategic resource for their business practice. The second theme investigates the ‘perspective of academia’ in terms of future research directions of Construction Informatics. The results of the industrial study indicates that ICT is seen as a value-adding resource, but a shift towards the recognition of the importance of ICT in terms of value adding in winning work and achieving strategic competitive advantage is observed. On the other hand, ICT Training is found to be the theme of highest priority from the academia point of view

    Contribución a la estimulación del uso de soluciones Cloud Computing: Diseño de un intermediador de servicios Cloud para fomentar el uso de ecosistemas distribuidos digitales confiables, interoperables y de acuerdo a la legalidad. Aplicación en entornos multi-cloud.

    Get PDF
    184 p.El objetivo del trabajo de investigación presentado en esta tesis es facilitar a los desarrolladores y operadores de aplicaciones desplegadas en múltiples Nubes el descubrimiento y la gestión de los diferentes servicios de Computación, soportando su reutilización y combinación, para generar una red de servicios interoperables, que cumplen con las leyes y cuyos acuerdos de nivel de servicio pueden ser evaluados de manera continua. Una de las contribuciones de esta tesis es el diseño y desarrollo de un bróker de servicios de Computación llamado ACSmI (Advanced Cloud Services meta-Intermediator). ACSmI permite evaluar el cumplimiento de los acuerdos de nivel de servicio incluyendo la legislación. ACSmI también proporciona una capa de abstracción intermedia para los servicios de Computación donde los desarrolladores pueden acceder fácilmente a un catálogo de servicios acreditados y compatibles con los requisitos no funcionales establecidos.Además, este trabajo de investigación propone la caracterización de las aplicaciones nativas multiNube y el concepto de "DevOps extendido" especialmente pensado para este tipo de aplicaciones. El concepto "DevOps extendido" pretende resolver algunos de los problemas actuales del diseño, desarrollo, implementación y adaptación de aplicaciones multiNube, proporcionando un enfoque DevOps novedoso y extendido para la adaptación de las prácticas actuales de DevOps al paradigma multiNube

    System of Systems Lifecycle Management: A New Concept Based on Process Engineering Methodologies

    Get PDF
    In order to tackle interoperability issues of large-scale automation systems, SOA (Service-Oriented Architecture) principles, where information exchange is manifested by systems providing and consuming services, have already been introduced. However, the deployment, operation, and maintenance of an extensive SoS (System of Systems) mean enormous challenges for system integrators as well as network and service operators. The existing lifecycle management approaches do not cover all aspects of SoS management; therefore, an integrated solution is required. The purpose of this paper is to introduce a new lifecycle approach, namely the SoSLM (System of Systems Lifecycle Management). This paper first provides an in-depth description and comparison of the most relevant process engineering methodologies and ITSM (Information Technology Service Management) frameworks, and how they affect various lifecycle management strategies. The paper’s novelty strives to introduce an Industry 4.0-compatible PLM (Product Lifecycle Management) model and to extend it to cover SoS management-related issues on well-known process engineering methodologies. The presented methodologies are adapted to the PLM model, thus creating the recommended SoSLM model. This is supported by demonstrations of how the IIoT (Industrial Internet of Things) applications and services can be developed and handled. Accordingly, complete implementation and integration are presented based on the proposed SoSLM model, using the Arrowhead framework that is available for IIoT SoS. View Full-Tex
    corecore