304 research outputs found

    On the Impossibility of Basing Identity Based Encryption on Trapdoor Permutations

    Full text link
    We ask whether an Identity Based Encryption (IBE) sys-tem can be built from simpler public-key primitives. We show that there is no black-box construction of IBE from Trapdoor Permutations (TDP) or even from Chosen Ci-phertext Secure Public Key Encryption (CCA-PKE). These black-box separation results are based on an essential prop-erty of IBE, namely that an IBE system is able to compress exponentially many public-keys into a short public parame-ters string. 1

    Non-malleable encryption: simpler, shorter, stronger

    Get PDF
    In a seminal paper, Dolev et al. [15] introduced the notion of non-malleable encryption (NM-CPA). This notion is very intriguing since it suffices for many applications of chosen-ciphertext secure encryption (IND-CCA), and, yet, can be generically built from semantically secure (IND-CPA) encryption, as was shown in the seminal works by Pass et al. [29] and by Choi et al. [9], the latter of which provided a black-box construction. In this paper we investigate three questions related to NM-CPA security: 1. Can the rate of the construction by Choi et al. of NM-CPA from IND-CPA be improved? 2. Is it possible to achieve multi-bit NM-CPA security more efficiently from a single-bit NM-CPA scheme than from IND-CPA? 3. Is there a notion stronger than NM-CPA that has natural applications and can be achieved from IND-CPA security? We answer all three questions in the positive. First, we improve the rate in the scheme of Choi et al. by a factor O(λ), where λ is the security parameter. Still, encrypting a message of size O(λ) would require ciphertext and keys of size O(λ2) times that of the IND-CPA scheme, even in our improved scheme. Therefore, we show a more efficient domain extension technique for building a λ-bit NM-CPA scheme from a single-bit NM-CPA scheme with keys and ciphertext of size O(λ) times that of the NM-CPA one-bit scheme. To achieve our goal, we define and construct a novel type of continuous non-malleable code (NMC), called secret-state NMC, as we show that standard continuous NMCs are not enough for the natural “encode-then-encrypt-bit-by-bit” approach to work. Finally, we introduce a new security notion for public-key encryption that we dub non-malleability under (chosen-ciphertext) self-destruct attacks (NM-SDA). After showing that NM-SDA is a strict strengthening of NM-CPA and allows for more applications, we nevertheless show that both of our results—(faster) construction from IND-CPA and domain extension from one-bit scheme—also hold for our stronger NM-SDA security. In particular, the notions of IND-CPA, NM-CPA, and NM-SDA security are all equivalent, lying (plausibly, strictly?) below IND-CCA securit

    Bounded CCA2-Secure Non-Malleable Encryption

    Get PDF
    Under an adaptive chosen ciphertext attack (CCA2), the security of an encryption scheme must hold against adversaries that have access to a decryption oracle. We consider a weakening of CCA2 security, wherein security need only hold against adversaries making an a-priori bounded number of queries to the decryption oracle. Concerning this notion, which we call bounded-CCA2 security, we show the following two results. (1) Bounded-CCA2 secure non-malleable encryption schemes exist if and only if semantically-secure (IND-CPA-secure) encryption schemes exist.(As far as we know, bounded-CCA2 non-malleability is the strongest notion of security known to be satisfiable assuming only the existence of semantically-secure encryption schemes.) (2) In contrast to CCA2 security, bounded-CCA2 security alone does not imply non-malleability. In particular, if there exists an encryption scheme that is bounded-CCA2 secure, then there exists another encryption scheme which remains bounded-CCA2 secure, but is malleable under a simple chosen-plaintext attack

    Semantic Security and Indistinguishability in the Quantum World

    Get PDF
    At CRYPTO 2013, Boneh and Zhandry initiated the study of quantum-secure encryption. They proposed first indistinguishability definitions for the quantum world where the actual indistinguishability only holds for classical messages, and they provide arguments why it might be hard to achieve a stronger notion. In this work, we show that stronger notions are achievable, where the indistinguishability holds for quantum superpositions of messages. We investigate exhaustively the possibilities and subtle differences in defining such a quantum indistinguishability notion for symmetric-key encryption schemes. We justify our stronger definition by showing its equivalence to novel quantum semantic-security notions that we introduce. Furthermore, we show that our new security definitions cannot be achieved by a large class of ciphers -- those which are quasi-preserving the message length. On the other hand, we provide a secure construction based on quantum-resistant pseudorandom permutations; this construction can be used as a generic transformation for turning a large class of encryption schemes into quantum indistinguishable and hence quantum semantically secure ones. Moreover, our construction is the first completely classical encryption scheme shown to be secure against an even stronger notion of indistinguishability, which was previously known to be achievable only by using quantum messages and arbitrary quantum encryption circuits.Comment: 37 pages, 2 figure

    Quantum Indistinguishability for Public Key Encryption

    Get PDF
    In this work we study the quantum security of public key encryption schemes (PKE). Boneh and Zhandry (CRYPTO'13) initiated this research area for PKE and symmetric key encryption (SKE), albeit restricted to a classical indistinguishability phase. Gagliardoni et al. (CRYPTO'16) advanced the study of quantum security by giving, for SKE, the first definition with a quantum indistinguishability phase. For PKE, on the other hand, no notion of quantum security with a quantum indistinguishability phase exists. Our main result is a novel quantum security notion (qIND-qCPA) for PKE with a quantum indistinguishability phase, which closes the aforementioned gap. We show a distinguishing attack against code-based schemes and against LWE-based schemes with certain parameters. We also show that the canonical hybrid PKE-SKE encryption construction is qIND-qCPA-secure, even if the underlying PKE scheme by itself is not. Finally, we classify quantum-resistant PKE schemes based on the applicability of our security notion. Our core idea follows the approach of Gagliardoni et al. by using so-called type-2 operators for encrypting the challenge message. At first glance, type-2 operators appear unnatural for PKE, as the canonical way of building them requires both the secret and the public key. However, we identify a class of PKE schemes - which we call recoverable - and show that for this class type-2 operators require merely the public key. Moreover, recoverable schemes allow to realise type-2 operators even if they suffer from decryption failures, which in general thwarts the reversibility mandated by type-2 operators. Our work reveals that many real-world quantum-resistant PKE schemes, including most NIST PQC candidates and the canonical hybrid construction, are indeed recoverable

    A Black-Box Construction of Non-Malleable Encryption from Semantically Secure Encryption

    Get PDF
    We show how to transform any semantically secure encryption scheme into a non-malleable one, with a black-box construction that achieves a quasi-linear blow-up in the size of the ciphertext. This improves upon the previous non-black-box construction of Pass, Shelat and Vaikuntanathan (Crypto \u2706). Our construction also extends readily to guarantee non-malleability under a bounded-CCA2 attack, thereby simultaneously improving on both results in the work of Cramer et al. (Asiacrypt \u2707). Our construction departs from the oft-used paradigm of re-encrypting the same message with different keys and then proving consistency of encryption. Instead, we encrypt an encoding of the message; the encoding is based on an error-correcting code with certain properties of reconstruction and secrecy from partial views, satisfied, e.g., by a Reed-Solomon code

    Studies on the Security of Selected Advanced Asymmetric Cryptographic Primitives

    Get PDF
    The main goal of asymmetric cryptography is to provide confidential communication, which allows two parties to communicate securely even in the presence of adversaries. Ever since its invention in the seventies, asymmetric cryptography has been improved and developed further, and a formal security framework has been established around it. This framework includes different security goals, attack models, and security notions. As progress was made in the field, more advanced asymmetric cryptographic primitives were proposed, with other properties in addition to confidentiality. These new primitives also have their own definitions and notions of security. This thesis consists of two parts, where the first relates to the security of fully homomorphic encryption and related primitives. The second part presents a novel cryptographic primitive, and defines what security goals the primitive should achieve. The first part of the thesis consists of Article I, II, and III, which all pertain to the security of homomorphic encryption schemes in one respect or another. Article I demonstrates that a particular fully homomorphic encryption scheme is insecure in the sense that an adversary with access only to the public material can recover the secret key. It is also shown that this insecurity mainly stems from the operations necessary to make the scheme fully homomorphic. Article II presents an adaptive key recovery attack on a leveled homomorphic encryption scheme. The scheme in question claimed to withstand precisely such attacks, and was the only scheme of its kind to do so at the time. This part of the thesis culminates with Article III, which is an overview article on the IND-CCA1 security of all acknowledged homomorphic encryption schemes. The second part of the thesis consists of Article IV, which presents Vetted Encryption (VE), a novel asymmetric cryptographic primitive. The primitive is designed to allow a recipient to vet who may send them messages, by setting up a public filter with a public verification key, and providing each vetted sender with their own encryption key. There are three different variants of VE, based on whether the sender is identifiable to the filter and/or the recipient. Security definitions, general constructions and comparisons to already existing cryptographic primitives are provided for all three variants.Doktorgradsavhandlin

    Improved, Black-Box, Non-Malleable Encryption from Semantic Security

    Get PDF
    We give a new black-box transformation from any semantically secure encryption scheme into a non-malleable one which has a better rate than the best previous work of Coretti et al. (TCC 2016-A). We achieve a better rate by departing from the “matrix encoding” methodology used by previous constructions, and working directly with a single codeword. We also use a Shamir secret-share packing technique to improve the rate of the underlying error-correcting code

    New Security Definitions, Constructions and Applications of Proxy Re-Encryption

    Get PDF
    La externalización de la gestión de la información es una práctica cada vez más común, siendo la computación en la nube (en inglés, cloud computing) el paradigma más representativo. Sin embargo, este enfoque genera también preocupación con respecto a la seguridad y privacidad debido a la inherente pérdida del control sobre los datos. Las soluciones tradicionales, principalmente basadas en la aplicación de políticas y estrategias de control de acceso, solo reducen el problema a una cuestión de confianza, que puede romperse fácilmente por los proveedores de servicio, tanto de forma accidental como intencionada. Por lo tanto, proteger la información externalizada, y al mismo tiempo, reducir la confianza que es necesario establecer con los proveedores de servicio, se convierte en un objetivo inmediato. Las soluciones basadas en criptografía son un mecanismo crucial de cara a este fin. Esta tesis está dedicada al estudio de un criptosistema llamado recifrado delegado (en inglés, proxy re-encryption), que constituye una solución práctica a este problema, tanto desde el punto de vista funcional como de eficiencia. El recifrado delegado es un tipo de cifrado de clave pública que permite delegar en una entidad la capacidad de transformar textos cifrados de una clave pública a otra, sin que pueda obtener ninguna información sobre el mensaje subyacente. Desde un punto de vista funcional, el recifrado delegado puede verse como un medio de delegación segura de acceso a información cifrada, por lo que representa un candidato natural para construir mecanismos de control de acceso criptográficos. Aparte de esto, este tipo de cifrado es, en sí mismo, de gran interés teórico, ya que sus definiciones de seguridad deben balancear al mismo tiempo la seguridad de los textos cifrados con la posibilidad de transformarlos mediante el recifrado, lo que supone una estimulante dicotomía. Las contribuciones de esta tesis siguen un enfoque transversal, ya que van desde las propias definiciones de seguridad del recifrado delegado, hasta los detalles específicos de potenciales aplicaciones, pasando por construcciones concretas
    corecore