223 research outputs found

    On-Line Dependability Enhancement of Multiprocessor SoCs by Resource Management

    Get PDF
    This paper describes a new approach towards dependable design of homogeneous multi-processor SoCs in an example satellite-navigation application. First, the NoC dependability is functionally verified via embedded software. Then the Xentium processor tiles are periodically verified via on-line self-testing techniques, by using a new IIP Dependability Manager. Based on the Dependability Manager results, faulty tiles are electronically excluded and replaced by fault-free spare tiles via on-line resource management. This integrated approach enables fast electronic fault detection/diagnosis and repair, and hence a high system availability. The dependability application runs in parallel with the actual application, resulting in a very dependable system. All parts have been verified by simulation

    Robust and Traffic Aware Medium Access Control Mechanisms for Energy-Efficient mm-Wave Wireless Network-on-Chip Architectures

    Get PDF
    To cater to the performance/watt needs, processors with multiple processing cores on the same chip have become the de-facto design choice. In such multicore systems, Network-on-Chip (NoC) serves as a communication infrastructure for data transfer among the cores on the chip. However, conventional metallic interconnect based NoCs are constrained by their long multi-hop latencies and high power consumption, limiting the performance gain in these systems. Among, different alternatives, due to the CMOS compatibility and energy-efficiency, low-latency wireless interconnect operating in the millimeter wave (mm-wave) band is nearer term solution to this multi-hop communication problem. This has led to the recent exploration of millimeter-wave (mm-wave) wireless technologies in wireless NoC architectures (WiNoC). To realize the mm-wave wireless interconnect in a WiNoC, a wireless interface (WI) equipped with on-chip antenna and transceiver circuit operating at 60GHz frequency range is integrated to the ports of some NoC switches. The WIs are also equipped with a medium access control (MAC) mechanism that ensures a collision free and energy-efficient communication among the WIs located at different parts on the chip. However, due to shrinking feature size and complex integration in CMOS technology, high-density chips like multicore systems are prone to manufacturing defects and dynamic faults during chip operation. Such failures can result in permanently broken wireless links or cause the MAC to malfunction in a WiNoC. Consequently, the energy-efficient communication through the wireless medium will be compromised. Furthermore, the energy efficiency in the wireless channel access is also dependent on the traffic pattern of the applications running on the multicore systems. Due to the bursty and self-similar nature of the NoC traffic patterns, the traffic demand of the WIs can vary both spatially and temporally. Ineffective management of such traffic variation of the WIs, limits the performance and energy benefits of the novel mm-wave interconnect technology. Hence, to utilize the full potential of the novel mm-wave interconnect technology in WiNoCs, design of a simple, fair, robust, and efficient MAC is of paramount importance. The main goal of this dissertation is to propose the design principles for robust and traffic-aware MAC mechanisms to provide high bandwidth, low latency, and energy-efficient data communication in mm-wave WiNoCs. The proposed solution has two parts. In the first part, we propose the cross-layer design methodology of robust WiNoC architecture that can minimize the effect of permanent failure of the wireless links and recover from transient failures caused by single event upsets (SEU). Then, in the second part, we present a traffic-aware MAC mechanism that can adjust the transmission slots of the WIs based on the traffic demand of the WIs. The proposed MAC is also robust against the failure of the wireless access mechanism. Finally, as future research directions, this idea of traffic awareness is extended throughout the whole NoC by enabling adaptiveness in both wired and wireless interconnection fabric

    Photonic packaging: transforming silicon photonic integrated circuits into photonic devices

    Get PDF
    Dedicated multi-project wafer (MPW) runs for photonic integrated circuits (PICs) from Si foundries mean that researchers and small-to-medium enterprises (SMEs) can now afford to design and fabricate Si photonic chips. While these bare Si-PICs are adequate for testing new device and circuit designs on a probe-station, they cannot be developed into prototype devices, or tested outside of the laboratory, without first packaging them into a durable module. Photonic packaging of PICs is significantly more challenging, and currently orders of magnitude more expensive, than electronic packaging, because it calls for robust micron-level alignment of optical components, precise real-time temperature control, and often a high degree of vertical and horizontal electrical integration. Photonic packaging is perhaps the most significant bottleneck in the development of commercially relevant integrated photonic devices. This article describes how the key optical, electrical, and thermal requirements of Si-PIC packaging can be met, and what further progress is needed before industrial scale-up can be achieved

    Design and application of reconfigurable circuits and systems

    No full text
    Open Acces

    AI/ML Algorithms and Applications in VLSI Design and Technology

    Full text link
    An evident challenge ahead for the integrated circuit (IC) industry in the nanometer regime is the investigation and development of methods that can reduce the design complexity ensuing from growing process variations and curtail the turnaround time of chip manufacturing. Conventional methodologies employed for such tasks are largely manual; thus, time-consuming and resource-intensive. In contrast, the unique learning strategies of artificial intelligence (AI) provide numerous exciting automated approaches for handling complex and data-intensive tasks in very-large-scale integration (VLSI) design and testing. Employing AI and machine learning (ML) algorithms in VLSI design and manufacturing reduces the time and effort for understanding and processing the data within and across different abstraction levels via automated learning algorithms. It, in turn, improves the IC yield and reduces the manufacturing turnaround time. This paper thoroughly reviews the AI/ML automated approaches introduced in the past towards VLSI design and manufacturing. Moreover, we discuss the scope of AI/ML applications in the future at various abstraction levels to revolutionize the field of VLSI design, aiming for high-speed, highly intelligent, and efficient implementations

    Carbon Nanotube Interconnect Modeling for Very Large Scale Integrated Circuits

    Get PDF
    In this research, we have studied and analyzed the physical and electrical properties of carbon nanotubes. Based on the reported models for current transport behavior in non-ballistic CNT-FETs, we have built a dynamic model for non-ballistic CNT-FETs. We have also extended the surface potential model of a non-ballistic CNT-FET to a ballistic CNT-FET and developed a current transport model for ballistic CNT-FETs. We have studied the current transport in metallic carbon nanotubes. By considering the electron-electron interactions, we have modified two-dimensional fluid model for electron transport to build a semi-classical one-dimensional fluid model to describe the electron transport in carbon nanotubes, which is regarded as one-dimensional system. Besides its accuracy compared with two-dimensional fluid model and LĂĽttinger liquid theory, one-dimensional fluid model is simple in mathematical modeling and easier to extend for electronic transport modeling of multi-walled carbon nanotubes and single-walled carbon nanotube bundles as interconnections. Based on our reported one-dimensional fluid model, we have calculated the parameters of the transmission line model for the interconnection wires made of single-walled carbon nanotube, multi-walled carbon nanotube and single-walled carbon nanotube bundle. The parameters calculated from these models show close agreements with experiments and other proposed models. We have also implemented these models to study carbon nanotube for on-chip wire inductors and it application in design of LC voltage-controlled oscillators. By using these CNT-FET models and CNT interconnects models, we have studied the behavior of CNT based integrated circuits, such as the inverter, ring oscillator, energy recovery logic; and faults in CNT based circuits

    A scalable packetised radio astronomy imager

    Get PDF
    Includes bibliographical referencesModern radio astronomy telescopes the world over require digital back-ends. The complexity of these systems depends on many site-specific factors, including the number of antennas, beams and frequency channels and the bandwidth to be processed. With the increasing popularity for ever larger interferometric arrays, the processing requirements for these back-ends have increased significantly. While the techniques for building these back-ends are well understood, every installation typically still takes many years to develop as the instruments use highly specialised, custom hardware in order to cope with the demanding engineering requirements. Modern technology has enabled reprogrammable FPGA-based processing boards, together with packet-based switching techniques, to perform all the digital signal processing requirements of a modern radio telescope array. The various instruments used by radio telescopes are functionally very different, but the component operations remain remarkably similar and many share core functionalities. Generic processing platforms are thus able to share signal processing libraries and can acquire different personalities to perform different functions simply by reprogramming them and rerouting the data appropriately. Furthermore, Ethernet-based packet-switched networks are highly flexible and scalable, enabling the same instrument design to be scaled to larger installations simply by adding additional processing nodes and larger network switches. The ability of a packetised network to transfer data to arbitrary processing nodes, along with these nodes' reconfigurability, allows for unrestrained partitioning of designs and resource allocation. This thesis describes the design and construction of the first working radio astronomy imaging instrument hosted on Ethernet-interconnected re- programmable FPGA hardware. I attempt to establish an optimal packetised architecture for the most popular instruments with particular attention to the core array functions of correlation and beamforming. Emphasis is placed on requirements for South Africa's MeerKAT array. A demonstration system is constructed and deployed on the KAT-7 array, MeerKAT's prototype. This research promises reduced instrument development time, lower costs, improved reliability and closer collaboration between telescope design teams

    On Fault Tolerance Methods for Networks-on-Chip

    Get PDF
    Technology scaling has proceeded into dimensions in which the reliability of manufactured devices is becoming endangered. The reliability decrease is a consequence of physical limitations, relative increase of variations, and decreasing noise margins, among others. A promising solution for bringing the reliability of circuits back to a desired level is the use of design methods which introduce tolerance against possible faults in an integrated circuit. This thesis studies and presents fault tolerance methods for network-onchip (NoC) which is a design paradigm targeted for very large systems-onchip. In a NoC resources, such as processors and memories, are connected to a communication network; comparable to the Internet. Fault tolerance in such a system can be achieved at many abstraction levels. The thesis studies the origin of faults in modern technologies and explains the classification to transient, intermittent and permanent faults. A survey of fault tolerance methods is presented to demonstrate the diversity of available methods. Networks-on-chip are approached by exploring their main design choices: the selection of a topology, routing protocol, and flow control method. Fault tolerance methods for NoCs are studied at different layers of the OSI reference model. The data link layer provides a reliable communication link over a physical channel. Error control coding is an efficient fault tolerance method especially against transient faults at this abstraction level. Error control coding methods suitable for on-chip communication are studied and their implementations presented. Error control coding loses its effectiveness in the presence of intermittent and permanent faults. Therefore, other solutions against them are presented. The introduction of spare wires and split transmissions are shown to provide good tolerance against intermittent and permanent errors and their combination to error control coding is illustrated. At the network layer positioned above the data link layer, fault tolerance can be achieved with the design of fault tolerant network topologies and routing algorithms. Both of these approaches are presented in the thesis together with realizations in the both categories. The thesis concludes that an optimal fault tolerance solution contains carefully co-designed elements from different abstraction levelsSiirretty Doriast

    Millimeter-wave interconnects for intra- and inter-chip transmission and beam steering in NoC-based multi-chip systems

    Get PDF
    The primary objective of this work is to investigate the communication capabilities of short-range millimeter-wave (mm-wave) communication among Network-on-Chip (NoC) based multi-core processors integrated on a substrate board. To address the demand for high-performance multi-chip computing systems, the present work studies the transmission coefficients between the on-chip antennas system for both intra- and inter-chip communication. It addresses techniques for enhancing transmission by using antenna arrays for beamforming. It also explores new and creative solutions to minimize the adverse effects of silicon on electromagnetic wave propagation using artificial magnetic conductors (AMC). The following summarizes the work performed and future work. Intra- and inter-chip transmission between wireless interconnects implemented as antennas on-chip (AoC), in a wire-bonded chip package are studied 30GHz and 60 GHz. The simulations are performed in ANSYS HFSS, which is based on the finite element method (FEM), to study the transmission and to analyze the electric field distribution. Simulation results have been validated with fabricated antennas at 30 GHz arranged in different orientations on silicon dies that can communicate with inter-chip transmission coefficients ranging from -45dB to -60dB while sustaining bandwidths up to 7GHz. The fabricated antennas show a shift in the resonant frequency to 25GHz. This shift is attributed to the Ground-Signal-Ground (GSG) probes used for measurement and to the Short-Open-Load (SOLT) calibration which has anomalies at millimeter-wave frequencies. Using measurements, a large-scale log-normal channel model is derived which can be used for system-level architecture design. Further, at 60 GHz densely packed multilayer copper wires in NoCs have been modeled to study their impact on the wireless transmission between antennas for both intra- and inter-chip links and are shown to be equivalent to copper sheets. It is seen that the antenna radiation efficiency reduces in the presence of these densely packed wires placed close to the antenna elements. Using this model, the reduction of inter-chip transmission is seen to be about 20dB as compared to a system with no wires. Lastly, the transmission characteristics of the antennas resonating at 60GHz in a flip-chip packaging environment are also presented
    • …
    corecore