4,541 research outputs found

    Analysis domain model for shared virtual environments

    Get PDF
    The field of shared virtual environments, which also encompasses online games and social 3D environments, has a system landscape consisting of multiple solutions that share great functional overlap. However, there is little system interoperability between the different solutions. A shared virtual environment has an associated problem domain that is highly complex raising difficult challenges to the development process, starting with the architectural design of the underlying system. This paper has two main contributions. The first contribution is a broad domain analysis of shared virtual environments, which enables developers to have a better understanding of the whole rather than the part(s). The second contribution is a reference domain model for discussing and describing solutions - the Analysis Domain Model

    From Big Data to Big Displays: High-Performance Visualization at Blue Brain

    Full text link
    Blue Brain has pushed high-performance visualization (HPV) to complement its HPC strategy since its inception in 2007. In 2011, this strategy has been accelerated to develop innovative visualization solutions through increased funding and strategic partnerships with other research institutions. We present the key elements of this HPV ecosystem, which integrates C++ visualization applications with novel collaborative display systems. We motivate how our strategy of transforming visualization engines into services enables a variety of use cases, not only for the integration with high-fidelity displays, but also to build service oriented architectures, to link into web applications and to provide remote services to Python applications.Comment: ISC 2017 Visualization at Scale worksho

    Constructing a gazebo: supporting teamwork in a tightly coupled, distributed task in virtual reality

    Get PDF
    Many tasks require teamwork. Team members may work concurrently, but there must be some occasions of coming together. Collaborative virtual environments (CVEs) allow distributed teams to come together across distance to share a task. Studies of CVE systems have tended to focus on the sense of presence or copresence with other people. They have avoided studying close interaction between us-ers, such as the shared manipulation of objects, because CVEs suffer from inherent network delays and often have cumbersome user interfaces. Little is known about the ef-fectiveness of collaboration in tasks requiring various forms of object sharing and, in particular, the concurrent manipu-lation of objects. This paper investigates the effectiveness of supporting teamwork among a geographically distributed group in a task that requires the shared manipulation of objects. To complete the task, users must share objects through con-current manipulation of both the same and distinct at-tributes. The effectiveness of teamwork is measured in terms of time taken to achieve each step, as well as the impression of users. The effect of interface is examined by comparing various combinations of walk-in cubic immersive projection technology (IPT) displays and desktop devices

    Metaverse: A Vision, Architectural Elements, and Future Directions for Scalable and Realtime Virtual Worlds

    Full text link
    With the emergence of Cloud computing, Internet of Things-enabled Human-Computer Interfaces, Generative Artificial Intelligence, and high-accurate Machine and Deep-learning recognition and predictive models, along with the Post Covid-19 proliferation of social networking, and remote communications, the Metaverse gained a lot of popularity. Metaverse has the prospective to extend the physical world using virtual and augmented reality so the users can interact seamlessly with the real and virtual worlds using avatars and holograms. It has the potential to impact people in the way they interact on social media, collaborate in their work, perform marketing and business, teach, learn, and even access personalized healthcare. Several works in the literature examine Metaverse in terms of hardware wearable devices, and virtual reality gaming applications. However, the requirements of realizing the Metaverse in realtime and at a large-scale need yet to be examined for the technology to be usable. To address this limitation, this paper presents the temporal evolution of Metaverse definitions and captures its evolving requirements. Consequently, we provide insights into Metaverse requirements. In addition to enabling technologies, we lay out architectural elements for scalable, reliable, and efficient Metaverse systems, and a classification of existing Metaverse applications along with proposing required future research directions

    A multimodal framework for interactive sonification and sound-based communication

    Get PDF
    • …
    corecore