455 research outputs found

    Constraint integration and violation handling for BPEL processes

    Get PDF
    Autonomic, i.e. dynamic and fault-tolerant Web service composition is a requirement resulting from recent developments such as on-demand services. In the context of planning-based service composition, multi-agent planning and dynamic error handling are still unresolved problems. Recently, business rule and constraint management has been looked at for enterprise SOA to add business flexibility. This paper proposes a constraint integration and violation handling technique for dynamic service composition. Higher degrees of reliability and fault-tolerance, but also performance for autonomously composed WS-BPEL processes are the objectives

    Dynamic integration of context model constraints in web service processes

    Get PDF
    Autonomic Web service composition has been a challenging topic for some years. The context in which composition takes places determines essential aspects. A context model can provide meaningful composition information for services process composition. An ontology-based approach for context information integration is the basis of a constraint approach to dynamically integrate context validation into service processes. The dynamic integration of context constraints into an orchestrated service process is a necessary direction to achieve autonomic service composition

    Using formal methods to develop WS-BPEL applications

    Get PDF
    In recent years, WS-BPEL has become a de facto standard language for orchestration of Web Services. However, there are still some well-known difficulties that make programming in WS-BPEL a tricky task. In this paper, we firstly point out major loose points of the WS-BPEL specification by means of many examples, some of which are also exploited to test and compare the behaviour of three of the most known freely available WS-BPEL engines. We show that, as a matter of fact, these engines implement different semantics, which undermines portability of WS-BPEL programs over different platforms. Then we introduce Blite, a prototypical orchestration language equipped with a formal operational semantics, which is closely inspired by, but simpler than, WS-BPEL. Indeed, Blite is designed around some of WS-BPEL distinctive features like partner links, process termination, message correlation, long-running business transactions and compensation handlers. Finally, we present BliteC, a software tool supporting a rapid and easy development of WS-BPEL applications via translation of service orchestrations written in Blite into executable WS-BPEL programs. We illustrate our approach by means of a running example borrowed from the official specification of WS-BPEL

    A Calculus for Orchestration of Web Services

    Get PDF
    Service-oriented computing, an emerging paradigm for distributed computing based on the use of services, is calling for the development of tools and techniques to build safe and trustworthy systems, and to analyse their behaviour. Therefore, many researchers have proposed to use process calculi, a cornerstone of current foundational research on specification and analysis of concurrent, reactive, and distributed systems. In this paper, we follow this approach and introduce CWS, a process calculus expressly designed for specifying and combining service-oriented applications, while modelling their dynamic behaviour. We show that CWS can model all the phases of the life cycle of service-oriented applications, such as publication, discovery, negotiation, orchestration, deployment, reconfiguration and execution. We illustrate the specification style that CWS supports by means of a large case study from the automotive domain and a number of more specific examples drawn from it

    Specification and analysis of SOC systems using COWS: a finance case study

    Get PDF
    Service-oriented computing, an emerging paradigm for distributed computing based on the use of services, is calling for the development of tools and techniques to build safe and trustworthy systems, and to analyse their behaviour. Therefore many researchers have proposed to use process calculi, a cornerstone of current foundational research on specification and analysis of concurrent and distributed systems. We illustrate this approach by focussing on COWS, a process calculus expressly designed for specifying and combining services, while modelling their dynamic behaviour. We present the calculus and one of the analysis techniques it enables, that is based on the temporal logic SocL and the associated model checker CMC. We demonstrate applicability of our tools by means of a large case study, from the financial domain, which is first specified in COWS, and then analysed by using SocL to express many significant properties and CMC to verify them

    A Classification of BPEL Extensions

    Get PDF
    The Business Process Execution Language (BPEL) has emerged as de-facto standard for business processes implementation. This language is designed to be extensible for including additional valuable features in a standardized manner. There are a number of BPEL extensions available. They are, however, neither classified nor evaluated with respect to their compliance to the BPEL standard. This article fills this gap by providing a framework for classifying BPEL extensions, a classification of existing extensions, and a guideline for designing BPEL extensions

    A robust client-driven distributed service localisation architecture

    Get PDF
    The fundamental purpose of service-oriented computing is the ability to quickly provide software resources to global users. The main aim of service localisation is to provide a method for facilitating the internationalisation and localisation of software services by allowing them to be adapted to different locales. We address lingual localisation by providing a service interface translation using the latest web services technology to adapt services to different languages and currency conversion as an example of regulatory localisation by using real-time data provided by the European Central Bank. Units and Regulatory Localisations are performed by a conversion mapping, which we have generated for a subset of locales. The aim is to investigate a standardised view on the localisation of services by using runtime and middleware services to deploy a localisation implementation. We apply traditional software localisation ideas to service interfaces. Our contribution is a localisation platform consisting of a conceptual model classifying localisation concerns and the definition of a number of specific platform services. The architecture in which this localisation technique is client-centric in a way that it allows the localisation to be controlled and managed by the client, ultimately providing more personalisation and trust. It also addresses robustness concerns by enabling a fault-tolerant architecture for third-party service localisation in a distributed setting

    RobustBPEL2: Transparent Autonomization in Business Processes through Dynamic Proxies

    Full text link

    Intelligent business processes composition based on mas, semantic and cloud integration (IPCASCI)

    Get PDF
    [EN]Component reuse is one of the techniques that most clearly contributes to the evolution of the software industry by providing efficient mechanisms to create quality software. Reuse increases both software reliability, due to the fact that it uses previously tested software components, and development productivity, and leads to a clear reduction in cost. Web services have become are an standard for application development on cloud computing environments and are essential in business process development. These services facilitate a software construction that is relatively fast and efficient, two aspects which can be improved by defining suitable models of reuse. This research work is intended to define a model which contains the construction requirements of new services from service composition. To this end, the composition is based on tested Web services and artificial intelligent tools at our disposal. It is believed that a multi-agent architecture based on virtual organizations is a suitable tool to facilitate the construction of cloud computing environments for business processes from other existing environments, and with help from ontological models as well as tools providing the standard BPEL (Business Process Execution Language). In the context of this proposal, we must generate a new business process from the available services in the platform, starting with the requirement specifications that the process should meet. These specifications will be composed of a semi-free description of requirements to describe the new service. The virtual organizations based on a multi-agent system will manage the tasks requiring intelligent behaviour. This system will analyse the input (textual description of the proposal) in order to deconstruct it into computable functionalities, which will be subsequently treated. Web services (or business processes) stored to be reused have been created from the perspective of SOA architectures and associated with an ontological component, which allows the multi-agent system (based on virtual organizations) to identify the services to complete the reuse process. The proposed model develops a service composition by applying a standard BPEL once the services that will compose the solution business process have been identified. This standard allows us to compose Web services in an easy way and provides the advantage of a direct mapping from Business Process Management Notation diagrams
    corecore